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Holographic correlators

An important class of observables in the context of AdS/CFT.

O(x1) O(x2)

O(x3)O(x4)

▶ Bulk: perturbative scattering of particles in AdS.

▶ Boundary: correlation of local operators in
strongly-coupled CFT.



Perturbative expansion in the bulk

disconnected tree 1-loop 2-loop

G = + a + a2 + a3 + · · ·

G(0) G(1) G(2) G(3)

+(stringy corrections)

Traditional approach: Witten diagrams.

▶ Bulk-to-bulk propagators are non-trivial functions of AdS
invariant distance.

▶ Integrals inside AdS is more complicated.

▶ Tremendous amount of interaction vertices.



About Kaluza–Klein modes

▶ Typical AdS/CFT models: AdSn × (internal space).

▶ Particles can move not only purely in AdS,
but also in the internal space.

▶ Boundary: they correspond to a sequence of 1/2-BPS
operators, indexed by a Kaluza–Klein charge.

The resulting bulk interaction is RICH and DIFFICULT.

organizing principles



Modern approach

▶ Modern approach to the computation of holographic
correlators is realized by BOOTSTRAP.

▶ This is pioneered by the work of Rastelli and Zhou,
which computes all ⟨OpOqOrOs⟩ in AdS5 × S5 [‘16, ‘17].
▶ O2: (scalar super-partner of) graviton in AdS5.
▶ Op>2: its KK compactifications on S5.

▶ With the constraints from superconformal symmetry
[Nirschl, Osborn, ’04]

⟨OpOqOrOs⟩ = Gfree
pqrs +RHpqrs.

▶ R: appropriate kinematic factors.
▶ Gfree

pqrs: determined by mean field theory.
▶ All dynamics is encoded in the reduced correlator Hpqrs.

▶ Bootstrap leads to
a single unified formula for all KK correlators!



Modern approach: Mellin space

For conformal correlators it is useful to introduce
Mellin amplitudes [Mack, ‘09][Penedones, ‘11]

⟨Op1(x1) · · ·Opn(xn)⟩connected =

∫
[dγ]A{p}(γ)

∏
i<j

Γ(γij)

((xi − xj)2)γij
.

γij : Mellin variables, constrained by

γij = γji,

n∑
j=1

γij = 0, γii ≡ −pi.

▶ pi + pj − 2γij resembles Mandelstam variables.

▶ Locations of poles ⇔ twists of operators in the OPE.

▶ Factorize on poles, like scattering amplitudes.

▶ Much simpler structure: e.g., for contact diagrams
M = polynomial.



Modern approach: bootstrap

▶ At 4 points, study Mellin amplitude for reduced correlator

Hpqrs =

∫
[dδ]Mpqrs(ρ)

∏
i<j

Γ(δij)

((xi − xi)2)δij

(δii ≡ 2− pi due to shifts caused by R)

▶ Set up ansatz at tree level in AdS5 × S5

Mpqrs =
∑
i,j,k

aijkσ
iτ i

(s− sm + 2i)(t− tm + 2j)(ũ− ũm + 2k)

R-symmetry factor

Range determined by selection rules

▶ aijk solved by symmetries, flat space limit, asymptotics,
polynomial behavior or residues, FACTORIZATION,
etc.



Use of KK correlators: hidden structures

▶ 4-point KK correlators possess a hidden 10d conformal
symmetry [Caron-Huot, Trinh, ‘18].

▶ Relation between reduced correlators

Hpqrs = DpqrsH2222.

▶ Alternatively, expressed in terms of a generating function
[Alday, Zhou, ‘19]

H((xi − xj)
2, yi · yj) = H2222((xi − xj)

2 + yi · yj).

Expand and extract all R-symmetry structures for Hpqrs.

Q1: Does the hidden structure extend to higher points?



Use of KK correlators: loop corrections in AdS

▶ Computations of loop-level scattering are realized by
UNITARITY + BOOTSTRAP [Aharony, et al, ‘16].

▶ Lower-loop CFT data ⇒ higher-loop singularities.

[OpOq ]n,l

one-loop

[OOO]

two-loop

▶ For H2−loop
2222 , a structural observation helps avoid the input

of [OOO] [Huang, EYY, ‘21][Drummond, Paul, ‘22].

Q2: CFT data for triple-particle operators?



In this work, we bootstrap

all five-point Kaluza–Klein correlators



Model to be studied

▶ Instead of gravitons, we choose to study gluons.

▶ Can be realized on an AdS5 × S3 background [Alday, et al, ‘21]

▶ by inserting probe D7 branes in AdS5 × S5.
▶ by D3 branes probing F-theory singularities.

▶ N = 2 SCFT on the boundary.
We only focus on the gluon sector.

▶ (Scalar) gluons + Kaluza–Klein tower

OI
p(x; v, v̄) ≡ OI;α1...αp;β1...βp−1

p vα1 · · · vαp v̄β1 · · · v̄βp−2 .

I - gauge (bulk). v - SUR(2). v̄ - SUL(2).

▶ x2
ij ≡ (xi − xj)

2, vij ≡ ϵαβv
α
i v

β
j , v̄ij ≡ ϵαβ v̄

α
i v̄

β
j .

an easier environment to make new observations



A first look at the structure

▶ Decomposition according to traces of color generators

⟨Op1(x1) · · ·Opn(xn)⟩ =
∑

σ∈Sn/Z2

tr
[
T Iσ(1) · · ·T Iσ(n)

]
G[σ] + · · · .

We focus on Gn ≡ G[12 · · ·n].
▶ Complexity of R-symmetry structures is tied to extremality

(assuming Opn(xn) has the largest twist)

2E = p1 + p2 + · · ·+ pn−1 − pn.

▶ Correlators are non-vanishing only for E ≥ n− 2.
(useful selection rules later on)

▶ Past study suggests
it is a good strategy to focus on fixed E at a time.
So we work with E = 3, 4, 5, . . . for five-point correlators.



Four-points vs higher-points

▶ At four points, many of the results in graviton scattering
have their analogues in gluon scattering.

▶ A hidden 8d conformal symmetry exists. [Alday, et al, ‘21]

▶ Superconformal symmetry constrains that

G4 = Gfree
4 +

(
V1234 x

2
13x

2
24 + V1342 x

2
14x

2
23 + V1423 x

2
12x

2
34

)︸ ︷︷ ︸
R1234

H4,

with V1234 ≡ v12v23v34v41. R1234 is permutation invariant.

▶ No higher-point analogue is known.
Higher-point correlators with low KK charges were studied.
[Alday et al, ‘22 ‘23][Cao et al, ‘23 ‘24] (explicitly ≤7-pt; in principle higher)

Q3: Write Gn>4 in a way trivializing superconformal?



We obtain a unified formula at five points.

Q1: Does the hidden structure extend to higher points?
Yes at five points.

Q2: CFT data for triple-particle operators?
Leave for future work.

Q3: Write Gn>4 in a way trivializing superconformal?
Interesting observations.



OPE selection rules

▶ Mellin amplitude has poles at

γ12 =
p1 + p2 − τ

2
− k.

▶ Bounded from below by Γ(γ12) in the Mellin transform.

▶ Upper bound (or min of τ) set by the min extremality of
sub-amplitudes (consider exchange of Oτ )

p1234−2E

p4

p3

p1

p2

τmin=p12−2E+4

(a)

p4

p3

p2

p1234−2E

p1

τmin=p234−2E+2

(b)

▶ Allowed poles in a single channel

channel (12) : γ12 − j, j = 1, 2, . . . , E − 2,

channel (15) : γ15 − p1 + k, k = 1, 2, . . . , E − 1.



OPE selection rules

▶ For consecutive OPEs, a further constraint from
the min extremality of the middle sub-amplitude

p4

p3

p1234−2E

p1

p2

p12−2jp34−2k

(A)

j

k

1

1

E−2

E−2
j+

k=E−
1

p1

p1234−2E

p2

p3

p4

p34−2jp234−2E+2k

(B)

j

k

1

1

E−2

E−1 j+
k=E

▶ There are also other component fields in the vector
multiplet of O (discussed later).
Their twists are greater than O, hence do not affect the
above counting.



Ansatz

▶ At 5 points there are five independent Mellin variables.
We choose them to be {γ12, γ23, γ34, γ45, γ15}.

▶ Kinematic bases
▶ Simultaneous poles

(A) :
{1, γ23, γ45, γ15}
(γ12−j)(γ34−k)

, j, k ≥ 1, j+k ≤ E−1,

(B) :
{1, γ12, γ23, γ45}

(γ34−1)(γ15−p1+k)
, j, k ≥ 1, j+k ≤ E ,

▶ Single poles

(a) :
{1}

γ12 − j
, j = 1, 2, . . . , E − 2,

(b) :
{1}

γ15 − p1 + k
, k = 1, 2, . . . , E − 1.

Name the whole list K (collecting all channels).



Ansatz

▶ R/L-structure bases: work in a specific frame

v1=

(
1
0

)
, v2=

(
1
1

)
, v3=

(
1
z1

)
, v4=

(
1
z2

)
, v5=

(
0
1

)
,

Similarly for v̄’s (with z replaced by w).
▶ In principle, can work out compatible R/L-structures for

each kinematic basis element, but this is not economic.
▶ In practice, simply list all R/L-structures for a given E

zm1 zn2w
i
1w

j
2, m+ n ≤ E − 1, i+ j ≤ E − 3

Name the whole list I.
▶ Full ansatz: take the direct product

K ⊗ I

and make linear combinations with unknown coefficients.



Operators in the exchange and factorizations

▶ We solve the ansatz solely by studying
FACTORIZATIONS.

▶ Operators that can be exchanged

operator Op J µ
p Fp

twist p p p+ 2

Lorentz spin 0 1 0

SU(2)R spin p
2

p
2 − 1 p

2 − 2

SU(2)L spin p
2 − 1 p

2 − 1 p
2 − 1

▶ Need correlators at lower points

⟨JOO⟩, ⟨FOO⟩, ⟨JOOO⟩, ⟨FOOO⟩.

▶ We work out these correlators from ⟨OOO⟩ and ⟨OOOO⟩
using analytic superspace techniques.



Operators in the exchange and factorizations

▶ Factorization on scalar (O or F ) poles (assuming point
1, 2, . . . , k are on the left) [Fitzpatrick, et al, ‘11]

M ∼ 1

γi,i+1 − pi+pi+1−p
2 +m

Γ(p)m!

(p− 1)m
ML,mMR,m,

ML,m =
∑

iab≥0,∑
iab

=m

ML(γab + iab)
∏

1≤a<b≤k

(γab)iab

iab!
.

▶ Similar factorization for spin one (J) has also been studied
before [Goncalves, et al, ‘14].

▶ A pole can receive contributions from primaries (m = 0)
and conformal descendants of other primaries (m > 0).
Need to sum them up when comparing the ansatz.

▶ Gluing SU(2)R and SU(2)L structures.



With this bootstrap procedure, we obtain formulas for

⟨OpOqOrOsOp+q+r+s−2E⟩
with E = 3, 4, 5, 6, respectively.

The direct computational result looks cumbersome...

... yet there are STRUCTURES buried deep inside!



Hints for a unified formula

▶ Choose some simultaneous poles sitting at the corner of the
poles grid, e.g., at γ12 = E − 2 and γ45 = p4 − 2

p4

p1234−2E

p3

p2

p1

p12−2jp123−2E+2k

(B)

j

k

1

1

E−2

E−1 j+
k=E

▶ Keeping track of the change as E varies, this term reads

A{pi} ⊃ t E−3
12

(E − 3)!

t p1−E+1
15

(p1 − E + 1)!

t p2−E+1
25

(p2 − E + 1)!

t p3−2
35

(p3 − 2)!

t p4−2
45

(p4 − 2)!

× (p4 − 2) v 2
12 v34 v45 v53 γ23

(γ12 − E + 2)(γ45 − p4 + 2)
,

Here tij ≡ vij v̄ij .

▶ Factors in blue suggest a “Mellin” transformation on S3.
[Vieira, Aprile, ‘20]



Hints for a unified formula

▶ Generalized Mellin amplitude (Mellin transform also on S3)

F{p} =
∑
nij

∫
[dγij ]M̃{p}(γ, n)

∏
i<j

t
nij

ij

Γ(1 + nij)

Γ(γij)

((xi − xi)2)γij
,

Summation is truncated by 1/Γ(1 + nij).
The previous expression as a term in this summation.

▶ If M̃{p} is independent of {p}, then we can construct a
generating function (ρij ≡ γij − nij)

F =

∞∑
pi=0

F{p} =

∫
[dρ]M̃(ρij)

∏
i<j

Γ(ρij)

(x2ij − tij)ρij

▶ A manifestation of hidden 8d structures.



Hints for a unified formula

▶ At 4 points

G4= Gfree
4 +

(
V1234 x

2
13x

2
24 + V1342 x

2
14x

2
23 + V1423 x

2
12x

2
34

)︸ ︷︷ ︸
R1234

H4,

A4 =
∑
nij

(
R̂1234 ◦ M̃4

)∏
i<j

t
nij

ij

Γ(1 + nij)
, M̃4 =

1

(ρ12 − 1)(ρ14 − 1)
.

▶ The Mellin space operator

R̂1234 = V1234 γ̂13γ̂24 + V1342 γ̂14γ̂23 + V1423 γ̂12γ̂34 ,

acts as multiplication and shift

γ̂ij ◦ F (γij , nij) = γij F (γij + 1, nij) ,

and is again permutation invariant.



A dozen of days later ...

Please be kind NOT to ask me what happened in the middle :-)



Formula (for planar correlators)

A5 = R̂(1) ◦ M̃ (1)
5 + R̂(2) ◦ M̃ (2)

5 + (cyclic) ,

where

M̃
(1)
5 = − 1

5 (ρ12 − 1)(ρ23 − 1)(ρ34 − 1)
,

M̃
(2)
5 = − 2

5 (ρ12 − 1)(ρ23 − 1)(ρ45 − 1)
,

1

2 3

4

5

1

2 3

4

5



Formula (for planar correlators)

R̂(1)= R̂1234,5+R̂2345,1+R̂3451,2+R̂4512,3+R̂5123,4

+(v13,5 n̂13+v23,5 n̂23+v14,5 n̂14+v24,5 n̂24)R̂1234

+(v13,4 n̂13+v23,4 n̂23+v53,4 n̂53)R̂1235

+(v23,1 n̂23+v24,1 n̂24+v25,1 n̂25)R̂2345 ,

R̂(2)= R̂4512,3+R̂4513,2+R̂4521,3+R̂4523,1+R̂4531,2

+R̂4532,1+(v14,5 n̂14+v24,5 n̂24+v34,5 n̂34)R̂1234

+(v51,4 n̂51+v52,4 n̂52+v53,4 n̂53)R̂1235 .

Here vij,k ≡ vikvjk/vij , and n̂ij ◦F (γij , nij) = nij F (γij , nij − 1).

An additional elementary five-label R̂ operator

R̂1234,5 = V12345 γ̂14γ̂25γ̂35 + V12354 γ̂34γ̂15γ̂25

+ V12534 γ̂23γ̂15γ̂45 + V15234 γ̂12γ̂35γ̂45



Comments on the five-label R̂

▶ R̂1234,5 enjoys cyclic permutation invariance in (1234),
and switches sign under reflection.

▶ It can be (non-uniquely) decomposed onto four-label R̂’s

R̂1234,5 = v24,1γ̂15 R̂2345 + v42,3γ̂35 R̂1245,

= v13,4γ̂45 R̂1345 + v31,2γ̂25 R̂1235.

▶ Geometric intuition: cutting a pyramid

1

2 3

4

5

= 1

2 3

4

5

Why such structure emerges?



Outlook

▶ CFT data

▶ Higher points

▶ Graviton scattering

▶ Weak coupling



Thank you very much!
Questions & comments are welcome.



Pain in reversing engineering ...

A MASS. A pile of simpler stuff? The ATOM.

⇒ ⇒
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