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Quantum Electrodynamics in 2+1 dimensions

QED3 is a U(1) gauge theory in 2+1 dimensions coupled to either
N complex scalar or (2-component) fermionic fields.

N must be even in fermionic case due to parity anomaly.

One can also add a Chern-Simons coupling with integer
coefficient k .

When N or k is large, theory flows to CFT in IR [Appelquist, Nash,

Wijewardhana ’88] , but less known at small N, k bc strongly coupled.

When N, k small, has both condensed matter realizations, and
also simplest example of IR duality without supersymmetry!
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Condensed matter realizations

For general N, k , describes phase transitions between fractional
quantum hall states [Lee, Wang, Zaletel, Vishwanath, He ’18] .

k = 0, N = 4 fermions describes algebraic spin liquid [Hermele,

Senthil, Fisher ’05] , maybe realized in Herbertsmithite [Helton et al, etc.] .

k = 0, N = 2 fermions describes antiferromagnetic spin-1/2
Heisenberg model on a Kagome lattice [He, Zaletel, Oshikawa, Pollmann

’16] .

k = 0, N = 2 scalars describes the Neel-VBS phase transition
[Read, Sachdev ’89] , maybe realized in SrCu2(BO3)2 [Cui et al ’23] .
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IR Duality

IR Duality is when two quantum field theories that are different at
small scales (the UV), become same CFT at large scales (the IR).

Since at least one theory is strongly coupled, hard to check
duality. All d > 2 cases required supersymmetry to check, e.g.

Original duality between 4d N = 1 gauge theories [Seiberg ’95] .

First non-susy duality is particle/vortex [Peskin ’78; Dasgupta, Halperin ’81]

QED3 with 1 complex scalar ⇔ critical O(2) model.

Compare charge q scaling dimension ∆q from O(2) lattice
[Hasenbusch ’20] to QED3 lattice [Kajantie et al ’04, Karathik ’18] :

O(2) : ∆0 = 1.511, ∆1/2 = .5191, ∆1 = 1.236, ∆3/2 = 2.109,

QED3 : ∆0 = 1.508, ∆1/2 = .48, ∆1 = 1.23, ∆3/2 = 2.15.
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3d Bosonization
Later duality relates fermionic theory to bosonic theory [Chen, Fisher,
Wu ’93, Barkeshli, McGreevy ’14] (called 3d bosonization):

QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔
critical O(2) model.

Recently, a fermion-fermion duality was proposed by [Son 15’; Wang,
Senthil ’15; Metlitski, Vishwanath ’16] :

QED3 with 1 complex fermion and k = 0 ⇔ 1 free complex fermion.

Hard to check CFT data of dualities using lattice, bc
Chern-Simons and/or fermions causes sign problem. Evidence:

Checking ’t Hooft anomalies, preserved under RG flow.

Extrapolate from dualities of QCD3 with many colors [Aharony ’16] .

Break supersymmetric version of duality [Giveon, Kutasov ’09] to
flow to non-susy seed duality [Gur-Ari, Yacoby ’15] .
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Web of dualities

All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang,
Wittten ’16; Karch, Tong ’16] , bc given one duality can derive others by
two operations:

1 S: gauge the global symmetry of both theories.

2 T : shift Chern-Simons level by 1 for both theories.

All dualities can thus be “derived” from a seed duality, e.g.:

QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free
complex fermion, i.e. ST [scalar ] = fermion.

Derive original bosonization duality as scalar = T−1S−1[fermion]

Can verify that ’t Hooft anomalies match between each side for
the dualities, and parity emergent from other conjectured dualities.
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Questions for QED3

Questions about strongly coupled physics in QED3:

Can we find dynamical evidence for the web of dualities?

For which small N is QED3 a CFT, and if not what is the symmetry
breaking pattern?

For small N, k with condensed matter realizations, can we compute
critical exponents to guide future experiments?

Answer: Monopole operators are window on strongly coupled
physics!

Large N, k expansion of their scaling dimensions is surprisingly
accurate for ALL N, k , use to answer above questions.
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Outline

Define monopole operators in QED3 and results for their scaling
dimensions at large N, k .

Compare to operators in dual theories for N = 1 scalars (O(2) WF
dual to k = 0, free fermion dual to k = 1).

Combine with conformal bootstrap to argue that scalar
N = 2, k = 0 theory (Neel-VBS) is tricritical

Use N = 2, k = 0 fermion result to argue for phase diagram,
including symmetry breaking pattern and O(4) WF points.
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QED3 definition

QED3 with with integer Chern-Simons level k :∫
d3x

[FµνFµν

4e2 − ik
4π
ϵµνρAµ∂νAρ + Lmatter

]
,

Lscalar =
σ2

4λ + |(∇µ − iAµ)ϕ
i |2 + ( 1

4 + iσ)|ϕi |2, where N complex
scalars ϕi and λ is real scalar Hubbard-stratonovich for ϕ4 term.

Lfermion = −ψ̄i(i /∇+ /A)ψi for even N 2-component complex ψi .

e, λ→ ∞ when we flow to IR, bc F 2 and σ2 are irrelevant.

Can construct operators from ϕi , ψi , σ, and Aµ in irreps of SU(N)
flavor symmetry, compute correlators at large N using Feynman
diagrams [Halperin, Lubetsky, Ma ’74; Kaul, Sachdev ’08] .
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Monopole operators

In addition to SU(N) flavor symmetry, have U(1)T symmetry:
Jµ = 1

8π ϵ
µνρFνρ current conserved b/c ϵµνρ∂µFνρ = 0.

All fields in Lagrangian uncharged under U(1)T .

Monopole operator Mq defined as having charge q under U(1)T ,
s.t.

∫
S2 F = 4πq.

Dirac quantization condition requires q ∈ Z/2.

For k = 0 scalars, Mq are scalars and singlets under SU(N).

For k ̸= 0, we will see that Mq generically in nontrivial irreps.

For fermions, Mq in nontrivial irreps for all k due to zero modes.
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∆q from S2 × R

The state-operator correspondence relates Mq on R3 to state on
S2 Hilbert space with 4πq magnetic flux, s.t. ∆q given by energy
on S2 × R with 4πq flux [Borokhov, Kapustin, Wu ’02] .

Chern-Simons term contributes 2qk to Gauss law constraint, so
need to dress vacuum with matter to make gauge invariant.

Fermion zero modes contribute qN.

Consider thermal free energy Fq ≡ − log Z
β on S2 × S1

β with 4πq
flux, where β ≡ 1/T is length of S1 [SMC, Iliesiu, Mezei, Pufu ’17] .

After integrating out matter, can compute Fq from large N saddle
point, s.t. holonomy of gauge field acts as chemical potential for
matter fixed by saddle condition to cancel gauge charge.

Bonus: Subleading in 1/β terms in Fq tell us degeneracy of states
⇒ irreps of monopole operator.
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Leading order free energy

From saddle we get energy (scaling dimension) and entropy:

Fq = NF (0)
q + F (1)

q + . . . , F (0)
q = ∆

(0)
q − 1

β
S(0)

q + O(e−β) .

For scalars and fermions we get (before zeta regularizing):

∆
(0)
scalar =

∑
j≥q

djλj + ξdqλq , S(0)
scalar = −dq (ξ log ξ − (1 + ξ) log[1 + ξ]) .

∆
(0)
fermion = −

∑
j≥q−1/2

djλj +
∑

q−1/2≤j<j̃

djλj + ξ̃jdj̃λj̃ ,

S(0)
fermion = −dj̃

(
ξ̃j log ξ̃j + (1 − ξ̃j) log[1 − ξ̃j ]

)
.

∆ is casimir energy plus matter dressing to cancel 2qk gauge flux
(extra −N for fermions due to zero modes).

Entropy is irreps from different ways to contract indices of dressing.
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Subleading

Subleading F (1)
q from fluctuations around saddle, numerically

compute sum/integral to get scaling dimension:

∆
(1)
q =

∫
dω
2π

∞∑
ℓ=0

(2ℓ+ 1) log det

[
Kq,κ
ℓ (ω)

K0,κ
ℓ (ω)

]
.

For k = 0, ∆ computed to subleading order O(N0) for first
fermions [Pufu ’13] then scalars [Dyer, Mezei, Pufu, Sachdev ’15] .

Large q limit computed by [de la Fuente ’18] , O(q0) matches large
charge prediction from [Hellerman, Orlando, Reffert, Watanabe ’15] .

For scalars, generalized to κ = 1 and q = 1/2 in [SMC ’21] , then
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Comparison of ∆q to duality: particle/vortex

Scalar QED3 with N = 1 and k = 0 ⇔ critical O(2) Wilson Fisher.

Mq ⇔ lowest dimension operator made of 2q complex bosons ϕ:

M1/2 ⇔ ϕ, and M1 ⇔ ϕϕ, and M3/2 ⇔ ϕϕϕ.

All these operators are unique scalars, so no degeneracy
breaking terms in monopole calculation.

O(2) operators computed for q ≤ 2 at high precision from
numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi ’20; Liu, Meltzer,

Poland, DSD ’20] .

General q in O(2) computed at lower precision using lattice
[Banerjee, Chandrasekharan, Orlando ’18] .
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Evidence for particle/vortex from monopoles

q ∆
(0)
q,0 ∆

(1)
q,0 N = 1 O(2) Error (%)

1/2 0.12459 0.38147 0.50609 0.519130434 2.5
1 0.31110 0.87452 1.1856 1.23648971 4.1

3/2 0.54407 1.4646 2.0087 2.1086(3) 4.7
2 0.81579 2.1388 2.9546 3.11535(73) 5.2

5/2 1.1214 2.8879 4.0093 4.265(6) 5.8
3 1.4575 3.7053 5.1628 5.509(7) 6.3

7/2 1.8217 4.5857 6.4074 6.841(8) 6.3
4 2.2118 5.5249 7.7367 8.278(9) 6.5

9/2 2.6263 6.5194 9.1458 9.796(9) 6.6
5 3.0638 7.5665 10.630 11.399(10) 6.7

Match even though sub-leading ∆
(1)
q,0 bigger than leading ∆

(0)
q,0 !

Match gets slightly worse with bigger q.
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Comparison to lattice for N > 1 and k = 0

0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3 0.1246
0.1246+0.3815/N
square
honeycomb
rectangular

1/Nb

F1/2/Nb

Lattice [Lou, Sandvik, Kawashima ’09; Kaul, Sandvik ’12; Block, Melko, Kaul ’13] also
matches large N for ∆1/2 (i.e. F1/2) for various finite N > 1.

Note that N = 2 might not be CFT.
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Comparison of ∆q to duality: 3d bosonization

Scalar QED3 with N = k = 1 ⇔ Free complex 2 component
fermion ψα.

Free fermion parity invariant, scalar QED3 parity invariant bc of
duality that relates k = ±1.

Mq ⇔ lowest dimension operators made of 2q fermions, half
integer spin for half integer q:

M1/2 ⇔ ψα with spin 1/2, and M1 ⇔ ϵαβψαψβ with spin zero.

For higher q need to dress with derivatives bc of antisymmetry, so
degenerate operators with same q and dimension, e.g. for q = 2:

1 ϵαβψαψβϵ
γδ∂µψγ∂νψγδ has ∆ = 6 and spin 2.

2 ϵαβψαψβϵ
γδ∂µψγ∂

µψγδ has ∆ = 6 and spin 0.
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Operators in free fermion theory

We can determine spectrum of free fermion theory by looking at
free energy on S2 × R in presence of background U(1) flux q.

Fermionic modes of spin j = 1/2,3/2, . . . have eigenvalue
λj = j + 1/2, charge 1/2, and 2j + 1 in each energy shell.

Operators with charge q that correspond to states of n filled
energy shells are unique scalars have charge and dimension:

q =

n−1/2∑
j=1/2

(2j + 1) = n(n + 1)/2 , e.g. q = 1,3,6,10, . . .

∆ =

n−1/2∑
j=1/2

(2j + 1)λj =
2
3

q
√

1 + 8q , e.g. ∆ = 2,10,28,60, . . .

Operators that correspond to states of partially filled energy shells
will have spin and degeneracy corresponding to valence modes.
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Evidence for 3d bosonization from monopoles

q ∆
(0)
q,1 ∆

(1)
q,1 N = 1 Fermion Error (%)

1/2 1 −0.2789 0.7211 1 28
1 2.5833 −0.6312 1.952 2 2.4

3/2 4.5873 −1.052 3.535 4 15
2 6.9380 −1.534 5.404 6 9.9

5/2 9.5904 −2.070 7.52 8 6.0
3 12.514 −2.655 9.859 10 1.4
6 34.727 −7.032 27.70 28 1.1
10 74.141 −14.71 59.43 60 0.95
15 135.67 −26.63 109.04 110 0.87
21 224.23 −43.75 180.5 182 0.82

Purple are unique scalar operators (i.e. filled energy shells)

Find match for unique scalars, that improves with q.
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Match for other q

Operators in free fermion theory that NOT unique scalars do not
match our monopole calculation (tho mismatch shrinks with q).

This could be because of the degeneracy breaking term in the
large N calculation, that we have not taken into account.

If we take ∆free
q = 2

3q
√

1 + 8q of unique scalars in free fermion
theory, which only valid for q = 1,3,6, . . . , and analytically
continue to general q then we get precise match now for all q:

∆ferm
1/2 = .7454, ∆ferm

3/2 = 3.606, ∆ferm
2 = 5.498,

∆mono
1/2 = .7211, ∆mono

3/2 = 3.535, ∆mono
2 = 5.404,

Suggests that large N calculation might correspond to effective
large q theory, which only applies to unique scalars but is analytic
in q [Komargodski, Mezei, Pal, Raviv-Moshe ’21] .
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Application to Neel-VBS phase transition

Standard Landau-Ginzburg phase transition has symmetry G
preserved in one phase, broken in other, e.g. critical O(N) model.

Phase transitions described by QED3 for N > 1 violates this, bc
SU(N) broken in one phase, but U(1)T broken in the other.

For materials with this phase transition, gauge fields emergent at
critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher ’04]

Simplest deconfined quantum critical point (DQCP) would be
N = 2, k = 0 scalar QED3: Neel-VBS transition [Read, Sachdev ’89] .

Neel phase breaks SU(2), VBS phase breaks U(1)T

Realized by quantum antiferromagnnets on 2d square lattice.
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Previous results

Lattice suggested theory is critical and SU(2)× U(1)T enhance to
SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza ’15] :

ϕiϕ
j combines with M1/2 to form vector of SO(5), and

∆ϕiϕj ≈ ∆M1/2 ≈ .63.

Unique SU(2)×U(1)T singlet ϕiϕ
i combines with M1 to form rank-2

of SO(5), with ∆ϕiϕi ≈ ∆M1 ≈ 1.5, so no relevant SO(5) singlet!

Problem: SO(5) bootstrap bounds say SO(5) CFT with
∆M1/2 ≈ .63 and no relevant singlet does not exist.

Maybe slightly non-unitary CFT, due to merger and annihilation of
critical and tricritical QED3? Some evidence from fuzzy sphere
simulation of SO(5) non-linear sigma model [Zhou, Hu, Zhu, He ’23] .

As change coupling, see singlet ∆s goes from above to below 3.
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Our bootstrap approach

Bootstrap correlators of SO(5) singlet s, vector v , rank-2 t , which
gives access also to rank-3 t3 and rank-4 t4.

Assume one relevant s (so two relevant SU(2)× U(1)T singlets),
one relevant v , t , t3, everything else irrelevant.

Assumptions motivated by large N estimates of ∆q , which
correspond to rank-2q operators.

29 crossing equations, use Skydive [Liu, DSD, Su, Rees ’23] to get
allowed region in space of

{
∆v ,∆s,∆t ,∆t3 ,

λsss
λvvt

, λtts
λvvt

, λvvs
λvvt

, λttt
λvvt

}
.

Fix ∆v = .63 from large N for ∆1/2, and maximize ∆t to look at
boundary of allowed region and read off ∆s,∆t ,∆t3 ,∆t4 .

Physical theories often saturate bounds, eg critical O(N) [Kos, Poland,

DSD ’13] and QED3 with 4 fermions [SMC, Pufu ’16] .
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Our bootstrap results

∆v ∆t ∆t3 ∆t4 ∆s
Bootstrap ’23 0.630∗ 1.519 2.598 3.884 2.359

Large N 0.630 1.497 2.552 3.770 –
Bootstrap ’24 0.595∗ 1.409 2.388 3.543 2.179

Lattice 0.607(4) 1.417(7) – 3.723(11) 2.273(4)
Fuzzy Sphere 0.584 1.454 2.565 3.885 2.845

We input one value ∆v , to get predictions for three values ∆t , ∆t3 ,
∆t4 that all match large N! Plus prediction for relevant ∆s.

Our prediction verified by lattice study [Sandvik et al ’24] !

We include new bootstrap results using smaller ∆v for comparison.

Even roughly matches the weakly first order results of [He et al ’23]

for certain value of their coupling, except their ∆s much bigger?
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Even roughly matches the weakly first order results of [He et al ’23]

for certain value of their coupling, except their ∆s much bigger?
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Match with fuzzy sphere?

In [He et al ’23] , ∆s changes noticeably with system size R (unlike
the other ∆, that already roughly matched our results):

0.1 0.2 0.3 0.4 0.5 0.6
1/ R

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Δs

2.37 + 1.42/ R

Extrapolating to R → ∞ gives ∆s ≈ 2.37, what we find! So maybe
fuzzy sphere approach actually agrees with us!
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Application to N = 2 fermionic QED3

While N ≥ 4 and k = 0 fermionic QED3 believed to flow to CFT,
debate about N = 2 theory:

If CFT, then SU(2)× U(1)T enhanced to O(4) according to web of
dualities [Xu, You ’15; Hsin, Seiberg ’16] .

But MC [Qin et al ’17] assuming O(4) ruled out by bootstrap [Li ’22]

If not CFT, claim that symmetry breaking is SU(2)× U(1)→
U(1)× U(1), i.e. 2 NGBs, due to condensation of ψ̄iψ

j .

We propose new phase diagram inspired by [Komargodski, Seiberg ’18]

for QCD3 for N > 2k (see also [Dumitrescu, Niro, Thorngren ’24] ).
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New phase diagram [SMC, Komargodski ’24]

Mass M for singlet ψ̄iψ
i , mass A for SU(2) adjoint ψ̄iψ

j .

SU(2)× U(1) → U(1) symmetry breaking, i.e. 3 NGBs, due to
condensation of M1/2 (in fundamental of SU(2) bc zero mode.).

Blue lines are O(2) WF (dual to N = 1 QED3 with k = 1/2).

X ,Y background gauge fields for SU(2), U(1).
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S3 Non-linear sigma model

Effective action at M = 0 in terms of SU(2) matrices g:

S =
f
2

∫
d2xdt δabTr(∂ag∂bg−1) + squashing

+
1

24π

∫
d2xdt ϵabcTr(g−1∂agg−1∂bgg−1∂cg) ,

Squashing breaks SO(4) to SU(2)× U(1).

Map singlet ψ̄iψ
i to θ term near M = 0, breaks UV parity.

Near O(4) WF at θ = 0,2π, map ψ̄iψ
i to unique singlet of WF,

invariant under new accidental parity (different from UV parity).

Difference between θ = 0 and 2π is the nontrivial SPT phase
2

4πYdY − 2
4πXdX .
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S1 NLσM and SPT absorption

In S1 phase we integrate out fermions to get

L = − 1
4e2 F 2 +

1
2π

ad(X + Y ) +
1

4π
(Y + X )d(Y − X )

Induced Chern-Simons terms cancel, so we keep Maxwell term.

Counter-term is not properly normalized?

Have U(1) 1-form symmetry due to dF = 0 with background C,
has mixed anomaly with X + Y symmetry.

SPT absorption: Cancel anomaly by adding 1
2π

∫
M4

Cd(X + Y ),
can set C = 1

2d(X − Y ) to cancel counterterm!
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Motivation for proposal

Any SU(2)× U(1) preserving potential also invariant under O(4),
so symmetry enhancement natural under RG flow.

SPT phases match, as explained on previous slides.

At M = 0, proof that symmetry breaking can only come from
monopole, and not ψ̄iψ

j [Dumitrescu, Niro, Thorngren ’24] .

QCD3 duality [Aharony ’16] : Nf fermions coupled to
U(k)−N+

Nf
2 ,−N+

Nf
2
↔ Nf scalar coupled to SU(N)k becomes our

dual for N = k = 1,Nf = 2.

Monopole scaling dimensions of N = 2 QED3 match dual
operators in O(4) WF:
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Evidence from monopoles

q 2∆(0)
q,0 ∆

(1)
q,0 N = 2 O(4) Error (%)

1/2 0.5302 −0.038138 0.492062 0.515(3) 4.5
1 1.3463 −0.19340(3) 1.1529 1.185(4) 2.7

3/2 2.37286 −0.42109(4) 1.95177 1.989(5) 1.9
2 3.5738 −0.70482(9) 2.86898 2.915(6) 1.6

5/2 4.9269 −1.0358(2) 3.8911 3.945(6) 1.4
3 6.41674 −1.4082(2) 5.00854 5.069(7) 1.2

7/2 8.03182 −1.8181(2) 6.21372 6.284(8) 1.1
4 9.76308 −2.2623(3) 7.50078 7.575(9) 1.0

9/2 11.6032 −2.7384(3) 8.86482 8.949(10) 0.9
5 13.5462 −3.2445(3) 10.3017 10.386(11) 0.8

O(4) WF from [Banerjee, Chandrasekharan, Orlando, Reffert ’19] .

Large N expansion also matched bootstrap results for N = 4 [SMC,

Pufu ’16; Albayrak, Erramilli, Li, Poland, Xin ’21] .
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Conclusion
Computed dimensions of monopoles in QED3 with N scalars and
CS k at large N, k and fixed κ ≡ k/N to subleading order.

Generalized previous results for both fermions and scalars at κ = 0.

Use scalar monopole calculation to show evidence for dualities:

Extrapolating to N = 1 and κ = 0 matches operators in dual O(2)
WF, also matches lattice results for ∆1/2 for higher N.

Extrapolating to N = 1 and κ = 1 matches operators in free fermion
theory, first dynamical check of 3d bosonization!

Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap
bound, suggests Neel-VBS is tricritical with prediction ∆s ≈ 2.36.

Recently matched by lattice calculation and fuzzy sphere!

Use fermion monopole calculation to show evidence of new phase
diagram for N = 2 QED3, with O(4) WF dual at finite mass.
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Future directions

Improve large N calculation of monopoles for non-unique scalars
to get match to free fermion theory (and check higher 1/N).

Derive analytic proof of 3d bosonization at large charge.

Generalize to other 3d gauge theories at large N, k :

QED3 with N fermions, use to check duality between QED3 with
N = 1 fermion and k = 1/2, and critical O(2) model.

N = 1 SQED3, check dualities in that case [Benini, Benvenuti ’18] .

QCD3 with general finite rank gauge group (κ = 0 in [Dyer,

Mezei, Pufu ’15] ), check dualities [Aharony, Benini, Hsin, Seiberg ’17] .

Bootstrap QED3, WIP for k = 0 scalar theory with Ning Su et al.

Test new phase diagram for N = 2 QED3 with lattice simulation.
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Extra: susy monopoles

O(N)

O(1)

O(1/N)

2 3 4 5
N
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0.50

Δ/N

Can compute BPS monopoles in 3d N = 2 QED3 exactly using
localization [Klebanov, Pufu, Sachdev, Safdi ’12] .

Nontrivial large N expansion, convergent, and O(1/N2) is small!
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