Monopoles, duality, and QED₃

Shai M. Chester Imperial College London

Based on: arXiv:2210.12370 with Eric Dupuis and William Witczak-Krempa and arXiv:2310.08343 with Ning Su and arXiv:2409.17913 with Zohar Komargodski

- QED₃ is a *U*(1) gauge theory in 2+1 dimensions coupled to either *N* complex scalar or (2-component) fermionic fields.
 - *N* must be even in fermionic case due to parity anomaly.
- One can also add a Chern-Simons coupling with integer coefficient *k*.
- When *N* or *k* is large, theory flows to CFT in IR [Appelquist, Nash, Wijewardhana '88], but less known at small *N*, *k* bc strongly coupled.
- When *N*, *k* small, has both condensed matter realizations, and also simplest example of IR duality without supersymmetry!

- QED₃ is a U(1) gauge theory in 2+1 dimensions coupled to either N complex scalar or (2-component) fermionic fields.
 - N must be even in fermionic case due to parity anomaly.
- One can also add a Chern-Simons coupling with integer coefficient *k*.
- When *N* or *k* is large, theory flows to CFT in IR [Appelquist, Nash, Wijewardhana '88], but less known at small *N*, *k* bc strongly coupled.
- When *N*, *k* small, has both condensed matter realizations, and also simplest example of IR duality without supersymmetry!

- QED₃ is a U(1) gauge theory in 2+1 dimensions coupled to either N complex scalar or (2-component) fermionic fields.
 - N must be even in fermionic case due to parity anomaly.
- One can also add a Chern-Simons coupling with integer coefficient *k*.
- When *N* or *k* is large, theory flows to CFT in IR [Appelquist, Nash, Wijewardhana '88], but less known at small *N*, *k* bc strongly coupled.
- When *N*, *k* small, has both condensed matter realizations, and also simplest example of IR duality without supersymmetry!

- QED₃ is a U(1) gauge theory in 2+1 dimensions coupled to either N complex scalar or (2-component) fermionic fields.
 - N must be even in fermionic case due to parity anomaly.
- One can also add a Chern-Simons coupling with integer coefficient k.
- When *N* or *k* is large, theory flows to CFT in IR [Appelquist, Nash, Wijewardhana '88], but less known at small *N*, *k* bc strongly coupled.
- When *N*, *k* small, has both condensed matter realizations, and also simplest example of IR duality without supersymmetry!

- QED₃ is a *U*(1) gauge theory in 2+1 dimensions coupled to either *N* complex scalar or (2-component) fermionic fields.
 - N must be even in fermionic case due to parity anomaly.
- One can also add a Chern-Simons coupling with integer coefficient *k*.
- When *N* or *k* is large, theory flows to CFT in IR [Appelquist, Nash, Wijewardhana '88], but less known at small *N*, *k* bc strongly coupled.
- When *N*, *k* small, has both condensed matter realizations, and also simplest example of IR duality without supersymmetry!

- For general *N*, *k*, describes phase transitions between fractional quantum hall states [Lee, Wang, Zaletel, Vishwanath, He '18].
- k = 0, N = 4 fermions describes algebraic spin liquid [Hermele, Senthil, Fisher '05], maybe realized in Herbertsmithite [Helton et al, etc.].
- k = 0, N = 2 fermions describes antiferromagnetic spin-1/2 Heisenberg model on a Kagome lattice [He, Zaletel, Oshikawa, Pollmann '16].
- k = 0, N = 2 scalars describes the Neel-VBS phase transition [Read, Sachdev '89], maybe realized in SrCu₂(BO₃)₂ [Cui et al '23].

- For general *N*, *k*, describes phase transitions between fractional quantum hall states [Lee, Wang, Zaletel, Vishwanath, He '18].
- k = 0, N = 4 fermions describes algebraic spin liquid [Hermele, Senthil, Fisher '05], maybe realized in Herbertsmithite [Helton et al, etc.].
- k = 0, N = 2 fermions describes antiferromagnetic spin-1/2 Heisenberg model on a Kagome lattice [He, Zaletel, Oshikawa, Pollmann '16].
- k = 0, N = 2 scalars describes the Neel-VBS phase transition [Read, Sachdev '89], maybe realized in SrCu₂(BO₃)₂ [Cui et al '23].

- For general *N*, *k*, describes phase transitions between fractional quantum hall states [Lee, Wang, Zaletel, Vishwanath, He '18].
- k = 0, N = 4 fermions describes algebraic spin liquid [Hermele, Senthil, Fisher '05], maybe realized in Herbertsmithite [Helton et al, etc.].
- k = 0, N = 2 fermions describes antiferromagnetic spin-1/2 Heisenberg model on a Kagome lattice [He, Zaletel, Oshikawa, Pollmann '16].
- k = 0, N = 2 scalars describes the Neel-VBS phase transition [Read, Sachdev '89], maybe realized in SrCu₂(BO₃)₂ [Cui et al '23].

- For general *N*, *k*, describes phase transitions between fractional quantum hall states [Lee, Wang, Zaletel, Vishwanath, He '18].
- k = 0, N = 4 fermions describes algebraic spin liquid [Hermele, Senthil, Fisher '05], maybe realized in Herbertsmithite [Helton et al, etc.].
- k = 0, N = 2 fermions describes antiferromagnetic spin-1/2 Heisenberg model on a Kagome lattice [He, Zaletel, Oshikawa, Pollmann '16].
- k = 0, N = 2 scalars describes the Neel-VBS phase transition [Read, Sachdev '89], maybe realized in SrCu₂(BO₃)₂ [Cui et al '23].

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g
 - Original duality between 4d $\mathcal{N}=$ 1 gauge theories [Seiberg '95] .
- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.

• Original duality between 4d $\mathcal{N}=$ 1 gauge theories [Seiberg '95] .

- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

 $\begin{array}{lll} O(2): & \Delta_0 = 1.511, & \Delta_{1/2} = .5191, & \Delta_1 = 1.236, & \Delta_{3/2} = 2.109, \\ \text{QED3}: & \Delta_0 = 1.508, & \Delta_{1/2} = .48, & \Delta_1 = 1.23, & \Delta_{3/2} = 2.15. \end{array}$

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.
 - $\bullet~$ Original duality between 4d $\mathcal{N}=1$ gauge theories [Seiberg '95] .
- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge *q* scaling dimension Δ_{*q*} from *O*(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.
 - Original duality between 4d $\mathcal{N}=1$ gauge theories [Seiberg '95] .
- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.
 - Original duality between 4d $\mathcal{N}=1$ gauge theories [Seiberg '95] .
- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.
 - Original duality between 4d $\mathcal{N}=1$ gauge theories [Seiberg '95] .
- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

 $\begin{array}{lll} O(2): & \Delta_0 = 1.511, & \Delta_{1/2} = .5191, & \Delta_1 = 1.236, & \Delta_{3/2} = 2.109, \\ \text{QED3}: & \Delta_0 = 1.508, & \Delta_{1/2} = .48, & \Delta_1 = 1.23, & \Delta_{3/2} = 2.15. \end{array}$

- IR Duality is when two quantum field theories that are different at small scales (the UV), become same CFT at large scales (the IR).
- Since at least one theory is strongly coupled, hard to check duality. All d > 2 cases required supersymmetry to check, e.g.

• Original duality between 4d $\mathcal{N}=1$ gauge theories [Seiberg '95] .

- First non-susy duality is particle/vortex [Peskin '78; Dasgupta, Halperin '81]
 - QED3 with 1 complex scalar \Leftrightarrow critical O(2) model.
 - Compare charge q scaling dimension Δ_q from O(2) lattice [Hasenbusch '20] to QED3 lattice [Kajantie et al '04, Karathik '18] :

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16]:
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD₃ with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15] .

- Later duality relates fermionic theory to bosonic theory [Chen, Fisher, Wu '93, Barkeshli, McGreevy '14] (called 3d bosonization):
 - QED3 with 1 complex fermion and Chern-Simons level −1/2 ⇔ critical O(2) model.
- Recently, a fermion-fermion duality was proposed by [Son 15'; Wang, Senthil '15; Metlitski, Vishwanath '16] :
 - QED3 with 1 complex fermion and $k = 0 \Leftrightarrow 1$ free complex fermion.
- Hard to check CFT data of dualities using lattice, bc Chern-Simons and/or fermions causes sign problem. Evidence:
 - Checking 't Hooft anomalies, preserved under RG flow.
 - Extrapolate from dualities of QCD3 with many colors [Aharony '16] .
 - Break supersymmetric version of duality [Giveon, Kutasov '09] to flow to non-susy seed duality [Gur-Ari, Yacoby '15].

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - 2 *T*: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - *T*: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - T: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - T: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - T: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$

• Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - T: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}$ [fermion]
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

- All these dualities are part of web of 3d dualities [Seiberg, Senthil, Wang, Witten '16; Karch, Tong '16], bc given one duality can derive others by two operations:
 - S: gauge the global symmetry of both theories.
 - T: shift Chern-Simons level by 1 for both theories.
- All dualities can thus be "derived" from a seed duality, e.g.:
 - QED3 with 1 complex scalar and Chern-Simons level 1 ⇔ 1 free complex fermion, i.e. *ST*[*scalar*] = *fermion*.
 - Derive original bosonization duality as $scalar = T^{-1}S^{-1}[fermion]$
- Can verify that 't Hooft anomalies match between each side for the dualities, and parity emergent from other conjectured dualities.

• Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!
 - Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

• Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!
 - Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

• Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!
 - Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!
 - Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

Questions for QED₃

Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!

• Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

Questions for QED₃

Questions about strongly coupled physics in QED₃:

- Can we find dynamical evidence for the web of dualities?
- For which small *N* is QED₃ a CFT, and if not what is the symmetry breaking pattern?
- For small *N*, *k* with condensed matter realizations, can we compute critical exponents to guide future experiments?
- Answer: Monopole operators are window on strongly coupled physics!
 - Large *N*, *k* expansion of their scaling dimensions is surprisingly accurate for ALL *N*, *k*, use to answer above questions.

- Define monopole operators in QED3 and results for their scaling dimensions at large *N*, *k*.
- Compare to operators in dual theories for N = 1 scalars (O(2) WF dual to k = 0, free fermion dual to k = 1).
- Combine with conformal bootstrap to argue that scalar N = 2, k = 0 theory (Neel-VBS) is tricritical
- Use N = 2, k = 0 fermion result to argue for phase diagram, including symmetry breaking pattern and O(4) WF points.

- Define monopole operators in QED3 and results for their scaling dimensions at large *N*, *k*.
- Compare to operators in dual theories for N = 1 scalars (O(2) WF dual to k = 0, free fermion dual to k = 1).
- Combine with conformal bootstrap to argue that scalar N = 2, k = 0 theory (Neel-VBS) is tricritical
- Use N = 2, k = 0 fermion result to argue for phase diagram, including symmetry breaking pattern and O(4) WF points.

- Define monopole operators in QED3 and results for their scaling dimensions at large *N*, *k*.
- Compare to operators in dual theories for N = 1 scalars (O(2) WF dual to k = 0, free fermion dual to k = 1).
- Combine with conformal bootstrap to argue that scalar N = 2, k = 0 theory (Neel-VBS) is tricritical
- Use N = 2, k = 0 fermion result to argue for phase diagram, including symmetry breaking pattern and O(4) WF points.

- Define monopole operators in QED3 and results for their scaling dimensions at large *N*, *k*.
- Compare to operators in dual theories for N = 1 scalars (O(2) WF dual to k = 0, free fermion dual to k = 1).
- Combine with conformal bootstrap to argue that scalar N = 2, k = 0 theory (Neel-VBS) is tricritical
- Use N = 2, k = 0 fermion result to argue for phase diagram, including symmetry breaking pattern and O(4) WF points.

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

• $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} - iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.

• $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .

• $e, \lambda \to \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.

• Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

• $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} - iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.

• $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .

• $e, \lambda \to \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.

• Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

• $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} - iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.

• $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .

- $e, \lambda \to \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.
- Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

- $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.
- $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .
- $e, \lambda \to \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.
- Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

- $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.
- $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .

• $e, \lambda \rightarrow \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.

• Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• QED₃ with with integer Chern-Simons level k:

$$\int d^3x \Big[\frac{F_{\mu\nu}F^{\mu\nu}}{4e^2} - \frac{ik}{4\pi} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + \mathcal{L}_{\text{matter}} \Big] \,,$$

• $\mathcal{L}_{\text{scalar}} = \frac{\sigma^2}{4\lambda} + |(\nabla_{\mu} - iA_{\mu})\phi^i|^2 + (\frac{1}{4} + i\sigma)|\phi^i|^2$, where *N* complex scalars ϕ_i and λ is real scalar Hubbard-stratonovich for ϕ^4 term.

• $\mathcal{L}_{\text{fermion}} = -\bar{\psi}_i (i \nabla + A) \psi_i$ for even *N* 2-component complex ψ_i .

- $e, \lambda \rightarrow \infty$ when we flow to IR, bc F^2 and σ^2 are irrelevant.
- Can construct operators from ϕ_i , ψ_i , σ , and A_{μ} in irreps of SU(N) flavor symmetry, compute correlators at large N using Feynman diagrams [Halperin, Lubetsky, Ma '74; Kaul, Sachdev '08].

• In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.

• All fields in Lagrangian uncharged under $U(1)_T$.

• Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.

• Dirac quantization condition requires $q \in \mathbb{Z}/2$.

- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, M_q in nontrivial irreps for all k due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.
 - Dirac quantization condition requires $q \in \mathbb{Z}/2$.
- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, M_q in nontrivial irreps for all k due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.

• Dirac quantization condition requires $q \in \mathbb{Z}/2$.

- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, M_q in nontrivial irreps for all k due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.
 - Dirac quantization condition requires $q \in \mathbb{Z}/2$.
- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, M_q in nontrivial irreps for all k due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.
 - Dirac quantization condition requires $q \in \mathbb{Z}/2$.
- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, *M_q* in nontrivial irreps for all *k* due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.
 - Dirac quantization condition requires $q \in \mathbb{Z}/2$.
- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, *M_q* in nontrivial irreps for all *k* due to zero modes.

- In addition to SU(N) flavor symmetry, have $U(1)_T$ symmetry: $J^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} F_{\nu\rho}$ current conserved b/c $\epsilon^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho} = 0$.
 - All fields in Lagrangian uncharged under $U(1)_T$.
- Monopole operator M_q defined as having charge q under $U(1)_T$, s.t. $\int_{S^2} F = 4\pi q$.
 - Dirac quantization condition requires $q \in \mathbb{Z}/2$.
- For k = 0 scalars, M_q are scalars and singlets under SU(N).
 - For $k \neq 0$, we will see that M_q generically in nontrivial irreps.
- For fermions, M_q in nontrivial irreps for all k due to zero modes.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.

• Fermion zero modes contribute *qN*.

- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute F_q from large N saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.

• Fermion zero modes contribute *qN*.

- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute F_q from large N saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.
 - Fermion zero modes contribute *qN*.
- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute F_q from large N saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.
 - Fermion zero modes contribute *qN*.
- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute *F_q* from large *N* saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.
 - Fermion zero modes contribute *qN*.
- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute *F_q* from large *N* saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

- The state-operator correspondence relates M_q on \mathbb{R}^3 to state on S^2 Hilbert space with $4\pi q$ magnetic flux, s.t. Δ_q given by energy on $S^2 \times \mathbb{R}$ with $4\pi q$ flux [Borokhov, Kapustin, Wu '02].
- Chern-Simons term contributes 2*qk* to Gauss law constraint, so need to dress vacuum with matter to make gauge invariant.
 - Fermion zero modes contribute *qN*.
- Consider thermal free energy $F_q \equiv \frac{-\log Z}{\beta}$ on $S^2 \times S^1_{\beta}$ with $4\pi q$ flux, where $\beta \equiv 1/T$ is length of S^1 [SMC, Iliesiu, Mezei, Pufu '17].
- After integrating out matter, can compute *F_q* from large *N* saddle point, s.t. holonomy of gauge field acts as chemical potential for matter fixed by saddle condition to cancel gauge charge.
 - Bonus: Subleading in $1/\beta$ terms in F_q tell us degeneracy of states \Rightarrow irreps of monopole operator.

• From saddle we get energy (scaling dimension) and entropy: $F_a = NF_a^{(0)} + F_a^{(1)} + \dots, \qquad F_a^{(0)} = \Delta_a^{(0)} - \frac{1}{2}S_a^{(0)} + O(e^{-\beta})$

• For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta_{\text{scalar}}^{(0)} = \sum_{j \ge q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad S_{\text{scalar}}^{(0)} = -d_q \left(\xi \log \xi - (1+\xi) \log[1+\xi] \right) \,. \\ &\Delta_{\text{fermion}}^{(0)} = -\sum_{j \ge q-1/2} d_j \lambda_j + \sum_{q-1/2 \le j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_j^L \lambda_{\tilde{j}}^* \,, \\ &S_{\text{fermion}}^{(0)} = -d_j^I \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}}^* + (1-\xi_{\tilde{j}}) \log[1-\xi_{\tilde{j}}] \right) \,. \end{split}$$

- \triangle is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra -N for fermions due to zero modes).
- Entropy is irreps from different ways to contract indices of dressing.

• From saddle we get energy (scaling dimension) and entropy: $F_q = NF_q^{(0)} + F_q^{(1)} + \dots, \qquad F_q^{(0)} = \Delta_q^{(0)} - \frac{1}{\beta}S_q^{(0)} + O(e^{-\beta}).$

• For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta_{\text{scalar}}^{(0)} = \sum_{j \ge q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad S_{\text{scalar}}^{(0)} = -d_q \left(\xi \log \xi - (1+\xi) \log[1+\xi] \right) \,. \\ &\Delta_{\text{fermion}}^{(0)} = -\sum_{j \ge q-1/2} d_j \lambda_j + \sum_{q-1/2 \le j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_j^L \lambda_{\tilde{j}}^* \,, \\ &S_{\text{fermion}}^{(0)} = -d_j^L \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}}^* + (1-\xi_{\tilde{j}}) \log[1-\xi_{\tilde{j}}] \right) \,. \end{split}$$

- Δ is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra -N for fermions due to zero modes).
- Entropy is irreps from different ways to contract indices of dressing.

- From saddle we get energy (scaling dimension) and entropy: $F_q = NF_q^{(0)} + F_q^{(1)} + \dots, \qquad F_q^{(0)} = \Delta_q^{(0)} - \frac{1}{\beta}S_q^{(0)} + O(e^{-\beta}).$
- For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta_{\text{scalar}}^{(0)} = \sum_{j \ge q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad S_{\text{scalar}}^{(0)} = -d_q \left(\xi \log \xi - (1+\xi) \log[1+\xi] \right) \,. \\ &\Delta_{\text{fermion}}^{(0)} = -\sum_{j \ge q-1/2} d_j \lambda_j + \sum_{q-1/2 \le j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_j^L \lambda_{\tilde{j}} \,, \\ &S_{\text{fermion}}^{(0)} = -d_j^L \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}} + (1-\xi_{\tilde{j}}) \log[1-\xi_{\tilde{j}}] \right) \,. \end{split}$$

- \triangle is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra -N for fermions due to zero modes).
- Entropy is irreps from different ways to contract indices of dressing.

• From saddle we get energy (scaling dimension) and entropy: $F_q = NF_q^{(0)} + F_q^{(1)} + \dots, \qquad F_q^{(0)} = \Delta_q^{(0)} - \frac{1}{\beta}S_q^{(0)} + O(e^{-\beta}).$

• For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta^{(0)}_{\text{scalar}} = \sum_{j \geq q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad \boldsymbol{S}^{(0)}_{\text{scalar}} = -d_q \left(\xi \log \xi - (1+\xi) \log[1+\xi] \right) \,. \\ &\Delta^{(0)}_{\text{fermion}} = -\sum_{j \geq q-1/2} d_j \lambda_j + \sum_{q-1/2 \leq j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_{\tilde{j}} \lambda_{\tilde{j}} \,, \\ &\boldsymbol{S}^{(0)}_{\text{fermion}} = -d_{\tilde{j}} \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}} + (1-\xi_{\tilde{j}}) \log[1-\xi_{\tilde{j}}] \right) \,. \end{split}$$

• Δ is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra -N for fermions due to zero modes).

• Entropy is irreps from different ways to contract indices of dressing.

• From saddle we get energy (scaling dimension) and entropy: $F_q = NF_q^{(0)} + F_q^{(1)} + \dots, \qquad F_q^{(0)} = \Delta_q^{(0)} - \frac{1}{\beta}S_q^{(0)} + O(e^{-\beta}).$

• For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta^{(0)}_{\text{scalar}} = \sum_{j \geq q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad \boldsymbol{S}^{(0)}_{\text{scalar}} = -d_q \left(\xi \log \xi - (1 + \xi) \log[1 + \xi] \right) \,. \\ &\Delta^{(0)}_{\text{fermion}} = -\sum_{j \geq q-1/2} d_j \lambda_j + \sum_{q-1/2 \leq j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_{\tilde{j}} \lambda_{\tilde{j}} \,, \\ &\boldsymbol{S}^{(0)}_{\text{fermion}} = -d_{\tilde{j}} \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}} + (1 - \xi_{\tilde{j}}) \log[1 - \xi_{\tilde{j}}] \right) \,. \end{split}$$

- ∆ is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra −*N* for fermions due to zero modes).
- Entropy is irreps from different ways to contract indices of dressing.

• From saddle we get energy (scaling dimension) and entropy: $F_q = NF_q^{(0)} + F_q^{(1)} + \dots, \qquad F_q^{(0)} = \Delta_q^{(0)} - \frac{1}{\beta}S_q^{(0)} + O(e^{-\beta}).$

• For scalars and fermions we get (before zeta regularizing):

$$\begin{split} &\Delta^{(0)}_{\text{scalar}} = \sum_{j \geq q} d_j \lambda_j + \xi d_q \lambda_q \,, \qquad \boldsymbol{S}^{(0)}_{\text{scalar}} = -d_q \left(\xi \log \xi - (1+\xi) \log[1+\xi] \right) \,. \\ &\Delta^{(0)}_{\text{fermion}} = -\sum_{j \geq q-1/2} d_j \lambda_j + \sum_{q-1/2 \leq j < \tilde{j}} d_j \lambda_j + \xi_{\tilde{j}} d_{\tilde{j}} \lambda_{\tilde{j}} \,, \\ &\boldsymbol{S}^{(0)}_{\text{fermion}} = -d_{\tilde{j}} \left(\xi_{\tilde{j}} \log \xi_{\tilde{j}} + (1-\xi_{\tilde{j}}) \log[1-\xi_{\tilde{j}}] \right) \,. \end{split}$$

- ∆ is casimir energy plus matter dressing to cancel 2*qk* gauge flux (extra −*N* for fermions due to zero modes).
- Entropy is irreps from different ways to contract indices of dressing.

• Subleading $F_q^{(1)}$ from fluctuations around saddle, numerically compute sum/integral to get scaling dimension:

$$\Delta_q^{(1)} = \int \frac{d\omega}{2\pi} \sum_{\ell=0}^{\infty} (2\ell+1) \log \det \left[\frac{\mathbf{K}_{\ell}^{q,\kappa}(\omega)}{\mathbf{K}_{\ell}^{0,\kappa}(\omega)} \right]$$

- For k = 0, Δ computed to subleading order $O(N^0)$ for first fermions [Pufu '13] then scalars [Dyer, Mezei, Pufu, Sachdev '15].
 - Large q limit computed by [de la Fuente '18], $O(q^0)$ matches large charge prediction from [Hellerman, Orlando, Reffert, Watanabe '15].
- For scalars, generalized to $\kappa = 1$ and q = 1/2 in [SMC '21], then general q, κ [SMC, Dupuis, Witzcak-Krempa '22]
- For fermions, $\kappa \neq$ 0 is WIP with Dupuis and Witzcak-Krempa.

• Subleading $F_q^{(1)}$ from fluctuations around saddle, numerically compute sum/integral to get scaling dimension:

$$\Delta_q^{(1)} = \int \frac{d\omega}{2\pi} \sum_{\ell=0}^{\infty} \left(2\ell + 1\right) \log \det \left[\frac{\mathbf{K}_{\ell}^{q,\kappa}(\omega)}{\mathbf{K}_{\ell}^{0,\kappa}(\omega)}\right]$$

- For k = 0, Δ computed to subleading order $O(N^0)$ for first fermions [Pufu '13] then scalars [Dyer, Mezei, Pufu, Sachdev '15].
 - Large q limit computed by [de la Fuente '18], $O(q^0)$ matches large charge prediction from [Hellerman, Orlando, Reffert, Watanabe '15].
- For scalars, generalized to $\kappa = 1$ and q = 1/2 in [SMC '21], then general q, κ [SMC, Dupuis, Witzcak-Krempa '22]
- For fermions, $\kappa \neq$ 0 is WIP with Dupuis and Witzcak-Krempa.

• Subleading $F_q^{(1)}$ from fluctuations around saddle, numerically compute sum/integral to get scaling dimension:

$$\Delta_q^{(1)} = \int \frac{d\omega}{2\pi} \sum_{\ell=0}^{\infty} \left(2\ell + 1\right) \log \det \left[\frac{\mathbf{K}_{\ell}^{q,\kappa}(\omega)}{\mathbf{K}_{\ell}^{0,\kappa}(\omega)}\right]$$

- For k = 0, Δ computed to subleading order O(N⁰) for first fermions [Pufu '13] then scalars [Dyer, Mezei, Pufu, Sachdev '15].
 - Large q limit computed by [de la Fuente '18], $O(q^0)$ matches large charge prediction from [Hellerman, Orlando, Reffert, Watanabe '15].
- For scalars, generalized to $\kappa = 1$ and q = 1/2 in [SMC '21], then general q, κ [SMC, Dupuis, Witzcak-Krempa '22]
- For fermions, $\kappa \neq$ 0 is WIP with Dupuis and Witzcak-Krempa.

• Subleading $F_q^{(1)}$ from fluctuations around saddle, numerically compute sum/integral to get scaling dimension:

$$\Delta_q^{(1)} = \int \frac{d\omega}{2\pi} \sum_{\ell=0}^{\infty} \left(2\ell + 1\right) \log \det \left[\frac{\mathbf{K}_{\ell}^{q,\kappa}(\omega)}{\mathbf{K}_{\ell}^{0,\kappa}(\omega)}\right]$$

- For k = 0, Δ computed to subleading order O(N⁰) for first fermions [Pufu '13] then scalars [Dyer, Mezei, Pufu, Sachdev '15].
 - Large q limit computed by [de la Fuente '18], $O(q^0)$ matches large charge prediction from [Hellerman, Orlando, Reffert, Watanabe '15].
- For scalars, generalized to $\kappa = 1$ and q = 1/2 in [SMC '21], then general q, κ [SMC, Dupuis, Witzcak-Krempa '22]

• For fermions, $\kappa \neq$ 0 is WIP with Dupuis and Witzcak-Krempa.

• Subleading $F_q^{(1)}$ from fluctuations around saddle, numerically compute sum/integral to get scaling dimension:

$$\Delta_q^{(1)} = \int \frac{d\omega}{2\pi} \sum_{\ell=0}^{\infty} \left(2\ell + 1\right) \log \det \left[\frac{\mathbf{K}_{\ell}^{q,\kappa}(\omega)}{\mathbf{K}_{\ell}^{0,\kappa}(\omega)}\right]$$

- For k = 0, Δ computed to subleading order O(N⁰) for first fermions [Pufu '13] then scalars [Dyer, Mezei, Pufu, Sachdev '15].
 - Large q limit computed by [de la Fuente '18], $O(q^0)$ matches large charge prediction from [Hellerman, Orlando, Reffert, Watanabe '15].
- For scalars, generalized to $\kappa = 1$ and q = 1/2 in [SMC '21], then general q, κ [SMC, Dupuis, Witzcak-Krempa '22]
- For fermions, $\kappa \neq 0$ is WIP with Dupuis and Witzcak-Krempa.

13/34

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

- Scalar QED3 with N = 1 and $k = 0 \Leftrightarrow$ critical O(2) Wilson Fisher.
- $M_q \Leftrightarrow$ lowest dimension operator made of 2q complex bosons ϕ :
 - $M_{1/2} \Leftrightarrow \phi$, and $M_1 \Leftrightarrow \phi \phi$, and $M_{3/2} \Leftrightarrow \phi \phi \phi$.
- All these operators are unique scalars, so no degeneracy breaking terms in monopole calculation.
- O(2) operators computed for q ≤ 2 at high precision from numerical bootstrap [SMC, Landry, Liu, Poland, DSD, Su, Vichi '20; Liu, Meltzer, Poland, DSD '20].
- General *q* in *O*(2) computed at lower precision using lattice [Banerjee, Chandrasekharan, Orlando '18].

Evidence for particle/vortex from monopoles

q	$\Delta^{(0)}_{q,0}$	$\Delta_{q,0}^{(1)}$	<i>N</i> = 1	<i>O</i> (2)	Error (%)
1/2	0.12459	0.38147	0.50609	0.519130434	2.5
1	0.31110	0.87452	1.1856	1.23648971	4.1
3/2	0.54407	1.4646	2.0087	2.1086(3)	4.7
2	0.81579	2.1388	2.9546	3.11535(73)	5.2
5/2	1.1214	2.8879	4.0093	4.265(6)	5.8
3	1.4575	3.7053	5.1628	5.509(7)	6.3
7/2	1.8217	4.5857	6.4074	6.841(8)	6.3
4	2.2118	5.5249	7.7367	8.278(9)	6.5
9/2	2.6263	6.5194	9.1458	9.796(9)	6.6
5	3.0638	7.5665	10.630	11.399(10)	6.7

• Match even though sub-leading $\Delta_{q,0}^{(1)}$ bigger than leading $\Delta_{q,0}^{(0)}$!

• Match gets slightly worse with bigger q.

Evidence for particle/vortex from monopoles

q	$\Delta^{(0)}_{q,0}$	$\Delta_{q,0}^{(1)}$	<i>N</i> = 1	<i>O</i> (2)	Error (%)
1/2	0.12459	0.38147	0.50609	0.519130434	2.5
1	0.31110	0.87452	1.1856	1.23648971	4.1
3/2	0.54407	1.4646	2.0087	2.1086(3)	4.7
2	0.81579	2.1388	2.9546	3.11535(73)	5.2
5/2	1.1214	2.8879	4.0093	4.265(6)	5.8
3	1.4575	3.7053	5.1628	5.509(7)	6.3
7/2	1.8217	4.5857	6.4074	6.841(8)	6.3
4	2.2118	5.5249	7.7367	8.278(9)	6.5
9/2	2.6263	6.5194	9.1458	9.796(9)	6.6
5	3.0638	7.5665	10.630	11.399(10)	6.7

• Match even though sub-leading $\Delta_{q,0}^{(1)}$ bigger than leading $\Delta_{q,0}^{(0)}$!

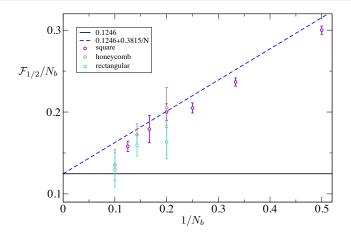
• Match gets slightly worse with bigger q.

Evidence for particle/vortex from monopoles

q	$\Delta^{(0)}_{q,0}$	$\Delta_{q,0}^{(1)}$	<i>N</i> = 1	<i>O</i> (2)	Error (%)
1/2	0.12459	0.38147	0.50609	0.519130434	2.5
1	0.31110	0.87452	1.1856	1.23648971	4.1
3/2	0.54407	1.4646	2.0087	2.1086(3)	4.7
2	0.81579	2.1388	2.9546	3.11535(73)	5.2
5/2	1.1214	2.8879	4.0093	4.265(6)	5.8
3	1.4575	3.7053	5.1628	5.509(7)	6.3
7/2	1.8217	4.5857	6.4074	6.841(8)	6.3
4	2.2118	5.5249	7.7367	8.278(9)	6.5
9/2	2.6263	6.5194	9.1458	9.796(9)	6.6
5	3.0638	7.5665	10.630	11.399(10)	6.7

- Match even though sub-leading $\Delta_{q,0}^{(1)}$ bigger than leading $\Delta_{q,0}^{(0)}$!
- Match gets slightly worse with bigger q.

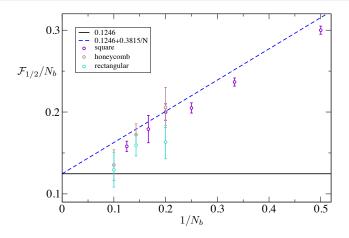
Comparison to lattice for N > 1 and k = 0



• Lattice [Lou, Sandvik, Kawashima '09; Kaul, Sandvik '12; Block, Melko, Kaul '13] also matches large N for $\Delta_{1/2}$ (i.e. $\mathcal{F}_{1/2}$) for various finite N > 1.

Note that N = 2 might not be CFT.

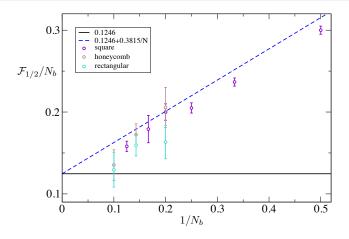
Comparison to lattice for N > 1 and k = 0



Lattice [Lou, Sandvik, Kawashima '09; Kaul, Sandvik '12; Block, Melko, Kaul '13] also matches large N for Δ_{1/2} (i.e. F_{1/2}) for various finite N > 1.

Note that N = 2 might not be CFT.

Comparison to lattice for N > 1 and k = 0



Lattice [Lou, Sandvik, Kawashima '09; Kaul, Sandvik '12; Block, Melko, Kaul '13] also matches large N for Δ_{1/2} (i.e. F_{1/2}) for various finite N > 1.

• Note that N = 2 might not be CFT.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:
 - $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}$ with spin zero.
- For higher *q* need to dress with derivatives bc of antisymmetry, so degenerate operators with same *q* and dimension, e.g. for *q* = 2:
 - $\bigcirc \ \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial_{\nu}\psi_{\gamma\delta} \text{ has } \Delta=6 \text{ and spin 2.}$
 - 2) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:
 - $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}$ with spin zero.
- For higher *q* need to dress with derivatives bc of antisymmetry, so degenerate operators with same *q* and dimension, e.g. for *q* = 2:
 - $\label{eq:constraint} \bullet \ \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial_{\nu}\psi_{\gamma\delta} \ \text{has} \ \Delta=6 \ \text{and} \ \text{spin} \ 2.$
 - 2) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:

• $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta}$ with spin zero.

- For higher *q* need to dress with derivatives bc of antisymmetry, so degenerate operators with same *q* and dimension, e.g. for *q* = 2:

 - 2) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:

• $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}$ with spin zero.

- For higher *q* need to dress with derivatives bc of antisymmetry, so degenerate operators with same *q* and dimension, e.g. for *q* = 2:

 - 2) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:

• $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta}$ with spin zero.

• For higher q need to dress with derivatives bc of antisymmetry, so degenerate operators with same q and dimension, e.g. for q = 2:

2) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:

• $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta}$ with spin zero.

• For higher q need to dress with derivatives bc of antisymmetry, so degenerate operators with same q and dimension, e.g. for q = 2:

$$\textbf{1} \ \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial_{\nu}\psi_{\gamma\delta} \text{ has } \Delta = 6 \text{ and spin 2.}$$

) $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- Scalar QED3 with $N = k = 1 \Leftrightarrow$ Free complex 2 component fermion ψ_{α} .
- Free fermion parity invariant, scalar QED3 parity invariant bc of duality that relates $k = \pm 1$.
- *M_q* ⇔ lowest dimension operators made of 2*q* fermions, half integer spin for half integer *q*:

• $M_{1/2} \Leftrightarrow \psi_{\alpha}$ with spin 1/2, and $M_1 \Leftrightarrow \epsilon^{\alpha\beta} \psi_{\alpha} \psi_{\beta}$ with spin zero.

• For higher q need to dress with derivatives bc of antisymmetry, so degenerate operators with same q and dimension, e.g. for q = 2:

$$\mathbf{D} \ \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial_{\nu}\psi_{\gamma\delta} \text{ has } \Delta = 6 \text{ and spin 2.}$$

2 $\epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\epsilon^{\gamma\delta}\partial_{\mu}\psi_{\gamma}\partial^{\mu}\psi_{\gamma\delta}$ has $\Delta = 6$ and spin 0.

- We can determine spectrum of free fermion theory by looking at free energy on S² × ℝ in presence of background U(1) flux q.
- Fermionic modes of spin j = 1/2, 3/2, ... have eigenvalue $\lambda_j = j + 1/2$, charge 1/2, and 2j + 1 in each energy shell.
- Operators with charge *q* that correspond to states of *n* filled energy shells are unique scalars have charge and dimension:

$$q = \sum_{j=1/2}^{n-1/2} (2j+1) = n(n+1)/2$$
, e.g. $q = 1, 3, 6, 10, \dots$

$$\Delta = \sum_{j=1/2}^{n-1/2} (2j+1)\lambda_j = \frac{2}{3}q\sqrt{1+8q}, \quad \text{e.g.} \quad \Delta = 2, 10, 28, 60, \dots$$

• Operators that correspond to states of partially filled energy shells will have spin and degeneracy corresponding to valence modes.

- We can determine spectrum of free fermion theory by looking at free energy on S² × ℝ in presence of background U(1) flux q.
- Fermionic modes of spin j = 1/2, 3/2, ... have eigenvalue $\lambda_j = j + 1/2$, charge 1/2, and 2j + 1 in each energy shell.
- Operators with charge q that correspond to states of n filled energy shells are unique scalars have charge and dimension:

$$q = \sum_{j=1/2}^{n-1/2} (2j+1) = n(n+1)/2$$
, e.g. $q = 1, 3, 6, 10, \dots$

$$\Delta = \sum_{j=1/2}^{n-1/2} (2j+1)\lambda_j = \frac{2}{3}q\sqrt{1+8q}, \quad \text{e.g.} \quad \Delta = 2, 10, 28, 60, \dots$$

• Operators that correspond to states of partially filled energy shells will have spin and degeneracy corresponding to valence modes.

- We can determine spectrum of free fermion theory by looking at free energy on S² × ℝ in presence of background U(1) flux q.
- Fermionic modes of spin j = 1/2, 3/2, ... have eigenvalue $\lambda_j = j + 1/2$, charge 1/2, and 2j + 1 in each energy shell.
- Operators with charge q that correspond to states of n filled energy shells are unique scalars have charge and dimension:

$$q = \sum_{j=1/2}^{n-1/2} (2j+1) = n(n+1)/2$$
, e.g. $q = 1, 3, 6, 10, \dots$

$$\Delta = \sum_{j=1/2}^{n-1/2} (2j+1)\lambda_j = \frac{2}{3}q\sqrt{1+8q}, \quad \text{e.g.} \quad \Delta = 2, 10, 28, 60, \dots$$

• Operators that correspond to states of partially filled energy shells will have spin and degeneracy corresponding to valence modes.

- We can determine spectrum of free fermion theory by looking at free energy on S² × ℝ in presence of background U(1) flux q.
- Fermionic modes of spin j = 1/2, 3/2, ... have eigenvalue $\lambda_j = j + 1/2$, charge 1/2, and 2j + 1 in each energy shell.
- Operators with charge q that correspond to states of n filled energy shells are unique scalars have charge and dimension:

$$q = \sum_{j=1/2}^{n-1/2} (2j+1) = n(n+1)/2, \quad \text{e.g.} \quad q = 1, 3, 6, 10, \dots$$
$$\Delta = \sum_{j=1/2}^{n-1/2} (2j+1)\lambda_j = \frac{2}{3}q\sqrt{1+8q}, \quad \text{e.g.} \quad \Delta = 2, 10, 28, 60, \dots$$

• Operators that correspond to states of partially filled energy shells will have spin and degeneracy corresponding to valence modes.

- We can determine spectrum of free fermion theory by looking at free energy on S² × ℝ in presence of background U(1) flux q.
- Fermionic modes of spin j = 1/2, 3/2, ... have eigenvalue $\lambda_j = j + 1/2$, charge 1/2, and 2j + 1 in each energy shell.
- Operators with charge *q* that correspond to states of *n* filled energy shells are unique scalars have charge and dimension:

$$q = \sum_{j=1/2}^{n-1/2} (2j+1) = n(n+1)/2, \quad \text{e.g.} \quad q = 1, 3, 6, 10, \dots$$
$$\Delta = \sum_{j=1/2}^{n-1/2} (2j+1)\lambda_j = \frac{2}{3}q\sqrt{1+8q}, \quad \text{e.g.} \quad \Delta = 2, 10, 28, 60, \dots$$

• Operators that correspond to states of partially filled energy shells will have spin and degeneracy corresponding to valence modes.

Shai Chester (Imperial College London)

18/34

Evidence for 3d bosonization from monopoles

q	$\Delta_{q,1}^{(0)}$	$\Delta_{q,1}^{(1)}$	<i>N</i> = 1	Fermion	Error (%)
1/2	1	-0.2789	0.7211	1	28
1	2.5833	-0.6312	1.952	2	2.4
3/2	4.5873	-1.052	3.535	4	15
2	6.9380	-1.534	5.404	6	9.9
5/2	9.5904	-2.070	7.52	8	6.0
3	12.514	-2.655	9.859	10	1.4
6	34.727	-7.032	27.70	28	1.1
10	74.141	-14.71	59.43	60	0.95
15	135.67	-26.63	109.04	110	0.87
21	224.23	-43.75	180.5	182	0.82

• Purple are unique scalar operators (i.e. filled energy shells)

• Find match for unique scalars, that improves with *q*.

Evidence for 3d bosonization from monopoles

q	$\Delta_{q,1}^{(0)}$	$\Delta_{q,1}^{(1)}$	<i>N</i> = 1	Fermion	Error (%)
1/2	1	-0.2789	0.7211	1	28
1	2.5833	-0.6312	1.952	2	2.4
3/2	4.5873	-1.052	3.535	4	15
2	6.9380	-1.534	5.404	6	9.9
5/2	9.5904	-2.070	7.52	8	6.0
3	12.514	-2.655	9.859	10	1.4
6	34.727	-7.032	27.70	28	1.1
10	74.141	-14.71	59.43	60	0.95
15	135.67	-26.63	109.04	110	0.87
21	224.23	-43.75	180.5	182	0.82

• Purple are unique scalar operators (i.e. filled energy shells)

• Find match for unique scalars, that improves with *q*.

Evidence for 3d bosonization from monopoles

q	$\Delta_{q,1}^{(0)}$	$\Delta_{q,1}^{(1)}$	<i>N</i> = 1	Fermion	Error (%)
1/2	1	-0.2789	0.7211	1	28
1	2.5833	-0.6312	1.952	2	2.4
3/2	4.5873	-1.052	3.535	4	15
2	6.9380	-1.534	5.404	6	9.9
5/2	9.5904	-2.070	7.52	8	6.0
3	12.514	-2.655	9.859	10	1.4
6	34.727	-7.032	27.70	28	1.1
10	74.141	-14.71	59.43	60	0.95
15	135.67	-26.63	109.04	110	0.87
21	224.23	-43.75	180.5	182	0.82

- Purple are unique scalar operators (i.e. filled energy shells)
- Find match for unique scalars, that improves with q.

- Operators in free fermion theory that NOT unique scalars do not match our monopole calculation (tho mismatch shrinks with *q*).
- This could be because of the degeneracy breaking term in the large *N* calculation, that we have not taken into account.
- If we take $\Delta_q^{\text{free}} = \frac{2}{3}q\sqrt{1+8q}$ of unique scalars in free fermion theory, which only valid for $q = 1, 3, 6, \ldots$, and analytically continue to general q then we get precise match now for all q:

$$\Delta_{1/2}^{\text{ferm}} = .7454, \ \Delta_{3/2}^{\text{ferm}} = 3.606, \ \Delta_{2}^{\text{ferm}} = 5.498, \ \Delta_{1/2}^{\text{mono}} = .7211, \ \Delta_{3/2}^{\text{mono}} = 3.535, \ \Delta_{2}^{\text{mono}} = 5.404$$

- Operators in free fermion theory that NOT unique scalars do not match our monopole calculation (tho mismatch shrinks with *q*).
- This could be because of the degeneracy breaking term in the large *N* calculation, that we have not taken into account.
- If we take $\Delta_q^{\text{free}} = \frac{2}{3}q\sqrt{1+8q}$ of unique scalars in free fermion theory, which only valid for $q = 1, 3, 6, \ldots$, and analytically continue to general q then we get precise match now for all q:

$$\Delta_{1/2}^{\text{ferm}} = .7454, \ \Delta_{3/2}^{\text{ferm}} = 3.606, \ \Delta_{2}^{\text{ferm}} = 5.498, \ \Delta_{1/2}^{\text{mono}} = .7211, \ \Delta_{3/2}^{\text{mono}} = 3.535, \ \Delta_{2}^{\text{mono}} = 5.404$$

- Operators in free fermion theory that NOT unique scalars do not match our monopole calculation (tho mismatch shrinks with *q*).
- This could be because of the degeneracy breaking term in the large *N* calculation, that we have not taken into account.
- If we take $\Delta_q^{\text{free}} = \frac{2}{3}q\sqrt{1+8q}$ of unique scalars in free fermion theory, which only valid for $q = 1, 3, 6, \ldots$, and analytically continue to general q then we get precise match now for all q:

$$\begin{split} \Delta_{1/2}^{\text{ferm}} &= .7454, \ \Delta_{3/2}^{\text{ferm}} = 3.606, \ \Delta_{2}^{\text{ferm}} = 5.498, \\ \Delta_{1/2}^{\text{mono}} &= .7211, \ \Delta_{3/2}^{\text{mono}} = 3.535, \ \Delta_{2}^{\text{mono}} = 5.404 \end{split}$$

- Operators in free fermion theory that NOT unique scalars do not match our monopole calculation (tho mismatch shrinks with *q*).
- This could be because of the degeneracy breaking term in the large *N* calculation, that we have not taken into account.
- If we take $\Delta_q^{\text{free}} = \frac{2}{3}q\sqrt{1+8q}$ of unique scalars in free fermion theory, which only valid for $q = 1, 3, 6, \ldots$, and analytically continue to general q then we get precise match now for all q:

$$\begin{split} \Delta_{1/2}^{\text{ferm}} &= .7454, \ \Delta_{3/2}^{\text{ferm}} = 3.606, \ \Delta_{2}^{\text{ferm}} = 5.498, \\ \Delta_{1/2}^{\text{mono}} &= .7211, \ \Delta_{3/2}^{\text{mono}} = 3.535, \ \Delta_{2}^{\text{mono}} = 5.404, \end{split}$$

- Operators in free fermion theory that NOT unique scalars do not match our monopole calculation (tho mismatch shrinks with *q*).
- This could be because of the degeneracy breaking term in the large *N* calculation, that we have not taken into account.
- If we take $\Delta_q^{\text{free}} = \frac{2}{3}q\sqrt{1+8q}$ of unique scalars in free fermion theory, which only valid for $q = 1, 3, 6, \ldots$, and analytically continue to general q then we get precise match now for all q:

$$\begin{split} \Delta^{\text{ferm}}_{1/2} &= .7454, \ \Delta^{\text{ferm}}_{3/2} = 3.606, \ \Delta^{\text{ferm}}_{2} = 5.498, \\ \Delta^{\text{mono}}_{1/2} &= .7211, \ \Delta^{\text{mono}}_{3/2} = 3.535, \ \Delta^{\text{mono}}_{2} = 5.404, \end{split}$$

- Standard Landau-Ginzburg phase transition has symmetry *G* preserved in one phase, broken in other, e.g. critical *O*(*N*) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

- Standard Landau-Ginzburg phase transition has symmetry *G* preserved in one phase, broken in other, e.g. critical *O*(*N*) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

- Standard Landau-Ginzburg phase transition has symmetry G preserved in one phase, broken in other, e.g. critical O(N) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

- Standard Landau-Ginzburg phase transition has symmetry G preserved in one phase, broken in other, e.g. critical O(N) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

Application to Neel-VBS phase transition

- Standard Landau-Ginzburg phase transition has symmetry *G* preserved in one phase, broken in other, e.g. critical *O*(*N*) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

Application to Neel-VBS phase transition

- Standard Landau-Ginzburg phase transition has symmetry *G* preserved in one phase, broken in other, e.g. critical *O*(*N*) model.
- Phase transitions described by QED₃ for N > 1 violates this, bc SU(N) broken in one phase, but U(1)_T broken in the other.
- For materials with this phase transition, gauge fields emergent at critical point, i.e. deconfined [Senthil, Vishwanath, Balents, Sachdev, Fisher '04]
- Simplest deconfined quantum critical point (DQCP) would be N = 2, k = 0 scalar QED₃: Neel-VBS transition [Read, Sachdev '89].
 - Neel phase breaks SU(2), VBS phase breaks $U(1)_T$
 - Realized by quantum antiferromagnnets on 2d square lattice.

- Lattice suggested theory is critical and $SU(2) \times U(1)_T$ enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of *SO*(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique $SU(2) \times U(1)_T$ singlet $\phi_i \phi^i$ combines with M_1 to form rank-2 of SO(5), with $\Delta_{\phi_i \phi^i} \approx \Delta_{M_1} \approx 1.5$, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of *SO*(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].
 - As change coupling, see singlet Δ_s goes from above to below 3.

- Lattice suggested theory is critical and SU(2) × U(1)_T enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of SO(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique $SU(2) \times U(1)_T$ singlet $\phi_i \phi^i$ combines with M_1 to form rank-2 of SO(5), with $\Delta_{\phi_i \phi^i} \approx \Delta_{M_1} \approx 1.5$, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of *SO*(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].
 - As change coupling, see singlet Δ_s goes from above to below 3.

- Lattice suggested theory is critical and SU(2) × U(1)_T enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of SO(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique SU(2) × U(1)_T singlet φ_iφⁱ combines with M₁ to form rank-2 of SO(5), with Δ_{φiφⁱ} ≈ Δ_{M1} ≈ 1.5, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of *SO*(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].
 - As change coupling, see singlet Δ_s goes from above to below 3.

- Lattice suggested theory is critical and SU(2) × U(1)_T enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of SO(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique SU(2) × U(1)_T singlet φ_iφⁱ combines with M₁ to form rank-2 of SO(5), with Δ_{φ_iφⁱ} ≈ Δ_{M1} ≈ 1.5, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of SO(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].
 - As change coupling, see singlet Δ_s goes from above to below 3.

- Lattice suggested theory is critical and SU(2) × U(1)_T enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of SO(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique SU(2) × U(1)_T singlet φ_iφⁱ combines with M₁ to form rank-2 of SO(5), with Δ_{φ_iφⁱ} ≈ Δ_{M1} ≈ 1.5, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of *SO*(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].

• As change coupling, see singlet Δ_s goes from above to below 3.

- Lattice suggested theory is critical and $SU(2) \times U(1)_T$ enhance to SO(5) [Nahum, Serna, Chalker, Ortuno, Somoza '15]:
 - $\phi_i \phi^j$ combines with $M_{1/2}$ to form vector of SO(5), and $\Delta_{\phi_i \phi^j} \approx \Delta_{M_{1/2}} \approx .63$.
 - Unique SU(2) × U(1)_T singlet φ_iφⁱ combines with M₁ to form rank-2 of SO(5), with Δ_{φ_iφⁱ} ≈ Δ_{M1} ≈ 1.5, so no relevant SO(5) singlet!
- Problem: *SO*(5) bootstrap bounds say *SO*(5) CFT with $\Delta_{M_{1/2}} \approx .63$ and no relevant singlet does not exist.
- Maybe slightly non-unitary CFT, due to merger and annihilation of critical and tricritical QED3? Some evidence from fuzzy sphere simulation of *SO*(5) non-linear sigma model [Zhou, Hu, Zhu, He '23].
 - As change coupling, see singlet Δ_s goes from above to below 3.

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant *s* (so two relevant $SU(2) \times U(1)_T$ singlets), one relevant *v*, *t*, *t*₃, everything else irrelevant.
 - Assumptions motivated by large N estimates of Δ_q , which correspond to rank-2q operators.
- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_V, \Delta_S, \Delta_t, \Delta_{t_3}, \frac{\lambda_{sss}}{\lambda_{wt}}, \frac{\lambda_{tts}}{\lambda_{wt}}, \frac{\lambda$
- Fix Δ_v = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant s (so two relevant SU(2) × U(1)_T singlets), one relevant v, t, t₃, everything else irrelevant.

 Assumptions motivated by large N estimates of ∆_q, which correspond to rank-2q operators.

- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_v, \Delta_s, \Delta_t, \Delta_{t_3}, \frac{\lambda_{sss}}{\lambda_{wt}}, \frac{\lambda_{tts}}{\lambda_{wt}}, \frac{\lambda$
- Fix Δ_v = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant s (so two relevant SU(2) × U(1)_T singlets), one relevant v, t, t₃, everything else irrelevant.
 - Assumptions motivated by large N estimates of Δ_q, which correspond to rank-2q operators.
- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_V, \Delta_S, \Delta_t, \Delta_{t_3}, \frac{\lambda_{sss}}{\lambda_{wt}}, \frac{\lambda_{tts}}{\lambda_{wt}}, \frac{\lambda$
- Fix Δ_v = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant s (so two relevant SU(2) × U(1)_T singlets), one relevant v, t, t₃, everything else irrelevant.
 - Assumptions motivated by large N estimates of Δ_q, which correspond to rank-2q operators.
- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_{V}, \Delta_{s}, \Delta_{t}, \Delta_{t_{3}}, \frac{\lambda_{sss}}{\lambda_{vvt}}, \frac{\lambda_{tts}}{\lambda_{vvt}}, \frac{\lambda_$
- Fix Δ_v = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant s (so two relevant SU(2) × U(1)_T singlets), one relevant v, t, t₃, everything else irrelevant.
 - Assumptions motivated by large N estimates of Δ_q, which correspond to rank-2q operators.
- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_{v}, \Delta_{s}, \Delta_{t}, \Delta_{t_{3}}, \frac{\lambda_{sss}}{\lambda_{wt}}, \frac{\lambda_{tts}}{\lambda_{wt}}, \frac{\lambda_{tts}}{\lambda_{w$
- Fix Δ_ν = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

- Bootstrap correlators of SO(5) singlet s, vector v, rank-2 t, which gives access also to rank-3 t₃ and rank-4 t₄.
- Assume one relevant s (so two relevant SU(2) × U(1)_T singlets), one relevant v, t, t₃, everything else irrelevant.
 - Assumptions motivated by large N estimates of Δ_q, which correspond to rank-2q operators.
- 29 crossing equations, use Skydive [Liu, DSD, Su, Rees '23] to get allowed region in space of $\{\Delta_{V}, \Delta_{s}, \Delta_{t}, \Delta_{t_{3}}, \frac{\lambda_{sss}}{\lambda_{vvt}}, \frac{\lambda_{tts}}{\lambda_{vvt}}, \frac{\lambda_$
- Fix Δ_ν = .63 from large N for Δ_{1/2}, and maximize Δ_t to look at boundary of allowed region and read off Δ_s, Δ_t, Δ_{t₃}, Δ_{t₄}.
 - Physical theories often saturate bounds, eg critical O(N) [Kos, Poland, DSD '13] and QED₃ with 4 fermions [SMC, Pufu '16].

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap '23	0.630*	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	_
Bootstrap '24	0.595*	1.409	2.388	3.543	2.179
Lattice	0.607(4)	1.417(7)	_	3.723(11)	2.273(4)
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

- We input one value Δ_v , to get predictions for three values Δ_t , Δ_{t_3} , Δ_{t_4} that all match large *N*! Plus prediction for relevant Δ_s .
- Our prediction verified by lattice study [Sandvik et al '24] !
 - We include new bootstrap results using smaller Δ_v for comparison.
- Even roughly matches the weakly first order results of [He et al '23] for certain value of their coupling, except their Δ_s much bigger?

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap '23	0.630*	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	_
Bootstrap '24	0.595*	1.409	2.388	3.543	2.179
Lattice	0.607(4)	1.417(7)	_	3.723(11)	2.273(4)
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

- We input one value Δ_v, to get predictions for three values Δ_t, Δ_{t₃}, Δ_{t₄} that all match large *N*! Plus prediction for relevant Δ_s.
- Our prediction verified by lattice study [Sandvik et al '24] !
 - We include new bootstrap results using smaller Δ_{ν} for comparison.
- Even roughly matches the weakly first order results of [He et al '23] for certain value of their coupling, except their Δ_s much bigger?

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap '23	0.630*	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	_
Bootstrap '24	0.595*	1.409	2.388	3.543	2.179
Lattice	0.607(4)	1.417(7)	_	3.723(11)	2.273(4)
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

- We input one value Δ_v, to get predictions for three values Δ_t, Δ_{t₃}, Δ_{t₄} that all match large *N*! Plus prediction for relevant Δ_s.
- Our prediction verified by lattice study [Sandvik et al '24] !
 - We include new bootstrap results using smaller Δ_v for comparison.
- Even roughly matches the weakly first order results of [He et al '23] for certain value of their coupling, except their Δ_s much bigger?

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap '23	0.630*	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	_
Bootstrap '24	0.595*	1.409	2.388	3.543	2.179
Lattice	0.607(4)	1.417(7)	_	3.723(11)	2.273(4)
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

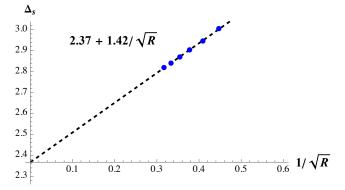
- We input one value Δ_v , to get predictions for three values Δ_t , Δ_{t_3} , Δ_{t_4} that all match large *N*! Plus prediction for relevant Δ_s .
- Our prediction verified by lattice study [Sandvik et al '24] !
 - We include new bootstrap results using smaller Δ_v for comparison.
- Even roughly matches the weakly first order results of [He et al '23] for certain value of their coupling, except their Δ_s much bigger?

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap '23	0.630*	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	_
Bootstrap '24	0.595*	1.409	2.388	3.543	2.179
Lattice	0.607(4)	1.417(7)	_	3.723(11)	2.273(4)
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

- We input one value Δ_v , to get predictions for three values Δ_t , Δ_{t_3} , Δ_{t_4} that all match large *N*! Plus prediction for relevant Δ_s .
- Our prediction verified by lattice study [Sandvik et al '24] !
 - We include new bootstrap results using smaller Δ_v for comparison.
- Even roughly matches the weakly first order results of [He et al '23] for certain value of their coupling, except their Δ_s much bigger?

Match with fuzzy sphere?

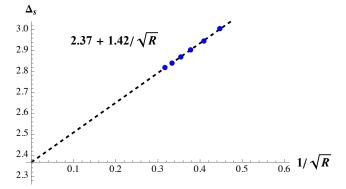
 In [He et al '23], Δ_s changes noticeably with system size R (unlike the other Δ, that already roughly matched our results):



• Extrapolating to $R \to \infty$ gives $\Delta_s \approx 2.37$, what we find! So maybe fuzzy sphere approach actually agrees with us!

Match with fuzzy sphere?

 In [He et al '23], Δ_s changes noticeably with system size R (unlike the other Δ, that already roughly matched our results):



• Extrapolating to $R \to \infty$ gives $\Delta_s \approx 2.37$, what we find! So maybe fuzzy sphere approach actually agrees with us!

- While N ≥ 4 and k = 0 fermionic QED₃ believed to flow to CFT, debate about N = 2 theory:
- If CFT, then $SU(2) \times U(1)_T$ enhanced to O(4) according to web of dualities [Xu, You '15; Hsin, Seiberg '16].
 - But MC [Qin et al '17] assuming O(4) ruled out by bootstrap [Li '22]
- If not CFT, claim that symmetry breaking is $SU(2) \times U(1) \rightarrow U(1) \times U(1)$, i.e. 2 NGBs, due to condensation of $\bar{\psi}_i \psi^j$.
- We propose new phase diagram inspired by [Komargodski, Seiberg '18] for QCD_3 for N > 2k (see also [Dumitrescu, Niro, Thorngren '24]).

- While N ≥ 4 and k = 0 fermionic QED₃ believed to flow to CFT, debate about N = 2 theory:
- If CFT, then SU(2) × U(1)_T enhanced to O(4) according to web of dualities [Xu, You '15; Hsin, Seiberg '16].

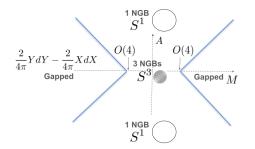
• But MC [Qin et al '17] assuming O(4) ruled out by bootstrap [Li '22]

- If not CFT, claim that symmetry breaking is $SU(2) \times U(1) \rightarrow U(1) \times U(1)$, i.e. 2 NGBs, due to condensation of $\bar{\psi}_i \psi^j$.
- We propose new phase diagram inspired by [Komargodski, Seiberg '18] for QCD_3 for N > 2k (see also [Dumitrescu, Niro, Thorngren '24]).

- While N ≥ 4 and k = 0 fermionic QED₃ believed to flow to CFT, debate about N = 2 theory:
- If CFT, then SU(2) × U(1)_T enhanced to O(4) according to web of dualities [Xu, You '15; Hsin, Seiberg '16].
 - But MC [Qin et al '17] assuming O(4) ruled out by bootstrap [Li '22]
- If not CFT, claim that symmetry breaking is $SU(2) \times U(1) \rightarrow U(1) \times U(1)$, i.e. 2 NGBs, due to condensation of $\bar{\psi}_i \psi^j$.
- We propose new phase diagram inspired by [Komargodski, Seiberg '18] for QCD_3 for N > 2k (see also [Dumitrescu, Niro, Thorngren '24]).

- While N ≥ 4 and k = 0 fermionic QED₃ believed to flow to CFT, debate about N = 2 theory:
- If CFT, then SU(2) × U(1)_T enhanced to O(4) according to web of dualities [Xu, You '15; Hsin, Seiberg '16].
 - But MC [Qin et al '17] assuming O(4) ruled out by bootstrap [Li '22]
- If not CFT, claim that symmetry breaking is $SU(2) \times U(1) \rightarrow U(1) \times U(1)$, i.e. 2 NGBs, due to condensation of $\bar{\psi}_i \psi^j$.
- We propose new phase diagram inspired by [Komargodski, Seiberg '18] for QCD_3 for N > 2k (see also [Dumitrescu, Niro, Thorngren '24]).

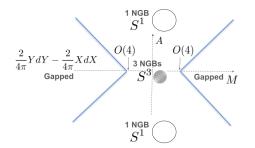
- While N ≥ 4 and k = 0 fermionic QED₃ believed to flow to CFT, debate about N = 2 theory:
- If CFT, then $SU(2) \times U(1)_T$ enhanced to O(4) according to web of dualities [Xu, You '15; Hsin, Seiberg '16].
 - But MC [Qin et al '17] assuming O(4) ruled out by bootstrap [Li '22]
- If not CFT, claim that symmetry breaking is $SU(2) \times U(1) \rightarrow U(1) \times U(1)$, i.e. 2 NGBs, due to condensation of $\bar{\psi}_i \psi^j$.
- We propose new phase diagram inspired by [Komargodski, Seiberg '18] for QCD_3 for N > 2k (see also [Dumitrescu, Niro, Thorngren '24]).



- Mass *M* for singlet $\bar{\psi}_i \psi^i$, mass *A* for *SU*(2) adjoint $\bar{\psi}_i \psi^j$.
- SU(2) × U(1) → U(1) symmetry breaking, i.e. 3 NGBs, due to condensation of M_{1/2} (in fundamental of SU(2) bc zero mode.).
- Blue lines are O(2) WF (dual to N = 1 QED3 with k = 1/2).

• X, Y background gauge fields for SU(2), U(1).

Shai Chester (Imperial College London)

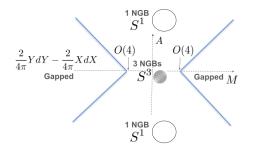


- Mass *M* for singlet $\bar{\psi}_i \psi^i$, mass *A* for *SU*(2) adjoint $\bar{\psi}_i \psi^j$.
- SU(2) × U(1) → U(1) symmetry breaking, i.e. 3 NGBs, due to condensation of M_{1/2} (in fundamental of SU(2) bc zero mode.).

• Blue lines are O(2) WF (dual to N = 1 QED3 with k = 1/2).

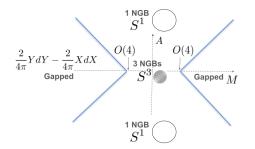
• X, Y background gauge fields for SU(2), U(1).

Shai Chester (Imperial College London)



- Mass *M* for singlet $\bar{\psi}_i \psi^i$, mass *A* for *SU*(2) adjoint $\bar{\psi}_i \psi^j$.
- SU(2) × U(1) → U(1) symmetry breaking, i.e. 3 NGBs, due to condensation of M_{1/2} (in fundamental of SU(2) bc zero mode.).
- Blue lines are O(2) WF (dual to N = 1 QED3 with k = 1/2).

• X, Y background gauge fields for SU(2), U(1).



- Mass *M* for singlet $\bar{\psi}_i \psi^i$, mass *A* for *SU*(2) adjoint $\bar{\psi}_i \psi^j$.
- SU(2) × U(1) → U(1) symmetry breaking, i.e. 3 NGBs, due to condensation of M_{1/2} (in fundamental of SU(2) bc zero mode.).
- Blue lines are O(2) WF (dual to N = 1 QED3 with k = 1/2).
- X, Y background gauge fields for SU(2), U(1).

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} \\ + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} \\ + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} \\ + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} \\ + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

$$S = \frac{f}{2} \int d^2 x dt \, \delta^{ab} \operatorname{Tr}(\partial_a g \partial_b g^{-1}) + \text{squashing} \\ + \frac{1}{24\pi} \int d^2 x dt \, \epsilon^{abc} \operatorname{Tr}(g^{-1} \partial_a g g^{-1} \partial_b g g^{-1} \partial_c g) \,,$$

- Squashing breaks SO(4) to $SU(2) \times U(1)$.
- Map singlet $\bar{\psi}_i \psi^i$ to θ term near M = 0, breaks UV parity.
- Near O(4) WF at $\theta = 0, 2\pi$, map $\bar{\psi}_i \psi^i$ to unique singlet of WF, invariant under new accidental parity (different from UV parity).
- Difference between $\theta = 0$ and 2π is the nontrivial SPT phase $\frac{2}{4\pi}YdY \frac{2}{4\pi}XdX$.

• In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -\frac{1}{4e^2}F^2 + \frac{1}{2\pi}ad(X+Y) + \frac{1}{4\pi}(Y+X)d(Y-X)$$

Induced Chern-Simons terms cancel, so we keep Maxwell term.

- Counter-term is not properly normalized?
- Have U(1) 1-form symmetry due to dF = 0 with background *C*, has mixed anomaly with X + Y symmetry.
- SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X+Y)$, can set $C = \frac{1}{2}d(X-Y)$ to cancel counterterm!

• In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -rac{1}{4e^2}F^2 + rac{1}{2\pi}ad(X+Y) + rac{1}{4\pi}(Y+X)d(Y-X)$$

Induced Chern-Simons terms cancel, so we keep Maxwell term.

- Counter-term is not properly normalized?
- Have U(1) 1-form symmetry due to dF = 0 with background *C*, has mixed anomaly with X + Y symmetry.
- SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X + Y)$, can set $C = \frac{1}{2}d(X Y)$ to cancel counterterm!

In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -\frac{1}{4e^2}F^2 + \frac{1}{2\pi}ad(X+Y) + \frac{1}{4\pi}(Y+X)d(Y-X)$$

Induced Chern-Simons terms cancel, so we keep Maxwell term.

- Counter-term is not properly normalized?
- Have U(1) 1-form symmetry due to dF = 0 with background C, has mixed anomaly with X + Y symmetry.
- SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X + Y)$, can set $C = \frac{1}{2}d(X Y)$ to cancel counterterm!

In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -\frac{1}{4e^2}F^2 + \frac{1}{2\pi}ad(X+Y) + \frac{1}{4\pi}(Y+X)d(Y-X)$$

Induced Chern-Simons terms cancel, so we keep Maxwell term.

Counter-term is not properly normalized?

- Have U(1) 1-form symmetry due to dF = 0 with background C, has mixed anomaly with X + Y symmetry.
- SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X + Y)$, can set $C = \frac{1}{2}d(X Y)$ to cancel counterterm!

• In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -\frac{1}{4e^2}F^2 + \frac{1}{2\pi}ad(X+Y) + \frac{1}{4\pi}(Y+X)d(Y-X)$$

- Induced Chern-Simons terms cancel, so we keep Maxwell term.
- Counter-term is not properly normalized?
- Have U(1) 1-form symmetry due to dF = 0 with background C, has mixed anomaly with X + Y symmetry.

• SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X + Y)$, can set $C = \frac{1}{2}d(X - Y)$ to cancel counterterm!

• In S¹ phase we integrate out fermions to get

$$\mathcal{L} = -\frac{1}{4e^2}F^2 + \frac{1}{2\pi}ad(X+Y) + \frac{1}{4\pi}(Y+X)d(Y-X)$$

- Induced Chern-Simons terms cancel, so we keep Maxwell term.
- Counter-term is not properly normalized?
- Have U(1) 1-form symmetry due to dF = 0 with background C, has mixed anomaly with X + Y symmetry.
- SPT absorption: Cancel anomaly by adding $\frac{1}{2\pi} \int_{\mathcal{M}_4} Cd(X+Y)$, can set $C = \frac{1}{2}d(X-Y)$ to cancel counterterm!

- Any SU(2) × U(1) preserving potential also invariant under O(4), so symmetry enhancement natural under RG flow.
- SPT phases match, as explained on previous slides.
- At M = 0, proof that symmetry breaking can only come from monopole, and not $\bar{\psi}_i \psi^j$ [Dumitrescu, Niro, Thorngren '24].
- QCD₃ duality [Aharony '16] : N_f fermions coupled to $U(k)_{-N+\frac{N_f}{2},-N+\frac{N_f}{2}} \leftrightarrow N_f$ scalar coupled to $SU(N)_k$ becomes our dual for $N = k = 1, N_f = 2$.
- Monopole scaling dimensions of N = 2 QED₃ match dual operators in O(4) WF:

- Any SU(2) × U(1) preserving potential also invariant under O(4), so symmetry enhancement natural under RG flow.
- SPT phases match, as explained on previous slides.
- At M = 0, proof that symmetry breaking can only come from monopole, and not $\bar{\psi}_i \psi^j$ [Dumitrescu, Niro, Thorngren '24].
- QCD₃ duality [Aharony '16] : N_f fermions coupled to $U(k)_{-N+\frac{N_f}{2},-N+\frac{N_f}{2}} \leftrightarrow N_f$ scalar coupled to $SU(N)_k$ becomes our dual for $N = k = 1, N_f = 2$.
- Monopole scaling dimensions of N = 2 QED₃ match dual operators in O(4) WF:

- Any SU(2) × U(1) preserving potential also invariant under O(4), so symmetry enhancement natural under RG flow.
- SPT phases match, as explained on previous slides.
- At M = 0, proof that symmetry breaking can only come from monopole, and not $\bar{\psi}_i \psi^j$ [Dumitrescu, Niro, Thorngren '24].
- QCD₃ duality [Aharony '16] : N_f fermions coupled to $U(k)_{-N+\frac{N_f}{2},-N+\frac{N_f}{2}} \leftrightarrow N_f$ scalar coupled to $SU(N)_k$ becomes our dual for $N = k = 1, N_f = 2$.
- Monopole scaling dimensions of N = 2 QED₃ match dual operators in O(4) WF:

- Any SU(2) × U(1) preserving potential also invariant under O(4), so symmetry enhancement natural under RG flow.
- SPT phases match, as explained on previous slides.
- At M = 0, proof that symmetry breaking can only come from monopole, and not $\bar{\psi}_i \psi^j$ [Dumitrescu, Niro, Thorngren '24].
- QCD₃ duality [Aharony '16]: N_f fermions coupled to $U(k)_{-N+\frac{N_f}{2},-N+\frac{N_f}{2}} \leftrightarrow N_f$ scalar coupled to $SU(N)_k$ becomes our dual for $N = k = 1, N_f = 2$.
- Monopole scaling dimensions of N = 2 QED₃ match dual operators in O(4) WF:

- Any SU(2) × U(1) preserving potential also invariant under O(4), so symmetry enhancement natural under RG flow.
- SPT phases match, as explained on previous slides.
- At M = 0, proof that symmetry breaking can only come from monopole, and not $\bar{\psi}_i \psi^j$ [Dumitrescu, Niro, Thorngren '24].
- QCD₃ duality [Aharony '16]: N_f fermions coupled to $U(k)_{-N+\frac{N_f}{2},-N+\frac{N_f}{2}} \leftrightarrow N_f$ scalar coupled to $SU(N)_k$ becomes our dual for $N = k = 1, N_f = 2$.
- Monopole scaling dimensions of N = 2 QED₃ match dual operators in O(4) WF:

Evidence from monopoles

q	$2\Delta_{q,0}^{(0)}$	$\Delta^{(1)}_{q,0}$	<i>N</i> = 2	<i>O</i> (4)	Error (%)
1/2	0.5302	-0.038138	0.492062	0.515(3)	4.5
1	1.3463	-0.19340(3)	1.1529	1.185(4)	2.7
3/2	2.37286	-0.42109(4)	1.95177	1.989(5)	1.9
2	3.5738	-0.70482(9)	2.86898	2.915(6)	1.6
5/2	4.9269	-1.0358(2)	3.8911	3.945(6)	1.4
3	6.41674	-1.4082(2)	5.00854	5.069(7)	1.2
7/2	8.03182	-1.8181(2)	6.21372	6.284(8)	1.1
4	9.76308	-2.2623(3)	7.50078	7.575(9)	1.0
9/2	11.6032	-2.7384(3)	8.86482	8.949(10)	0.9
5	13.5462	-3.2445(3)	10.3017	10.386(11)	0.8

• O(4) WF from [Banerjee, Chandrasekharan, Orlando, Reffert '19].

• Large *N* expansion also matched bootstrap results for N = 4 [SMC, Pufu '16; Albayrak, Erramilli, Li, Poland, Xin '21].

Evidence from monopoles

q	$2\Delta_{q,0}^{(0)}$	$\Delta^{(1)}_{q,0}$	<i>N</i> = 2	<i>O</i> (4)	Error (%)
1/2	0.5302	-0.038138	0.492062	0.515(3)	4.5
1	1.3463	-0.19340(3)	1.1529	1.185(4)	2.7
3/2	2.37286	-0.42109(4)	1.95177	1.989(5)	1.9
2	3.5738	-0.70482(9)	2.86898	2.915(6)	1.6
5/2	4.9269	-1.0358(2)	3.8911	3.945(6)	1.4
3	6.41674	-1.4082(2)	5.00854	5.069(7)	1.2
7/2	8.03182	-1.8181(2)	6.21372	6.284(8)	1.1
4	9.76308	-2.2623(3)	7.50078	7.575(9)	1.0
9/2	11.6032	-2.7384(3)	8.86482	8.949(10)	0.9
5	13.5462	-3.2445(3)	10.3017	10.386(11)	0.8

• O(4) WF from [Banerjee, Chandrasekharan, Orlando, Reffert '19] .

• Large *N* expansion also matched bootstrap results for N = 4 [SMC, Pufu '16; Albayrak, Erramilli, Li, Poland, Xin '21].

Evidence from monopoles

q	$2\Delta_{q,0}^{(0)}$	$\Delta^{(1)}_{q,0}$	<i>N</i> = 2	<i>O</i> (4)	Error (%)
1/2	0.5302	-0.038138	0.492062	0.515(3)	4.5
1	1.3463	-0.19340(3)	1.1529	1.185(4)	2.7
3/2	2.37286	-0.42109(4)	1.95177	1.989(5)	1.9
2	3.5738	-0.70482(9)	2.86898	2.915(6)	1.6
5/2	4.9269	-1.0358(2)	3.8911	3.945(6)	1.4
3	6.41674	-1.4082(2)	5.00854	5.069(7)	1.2
7/2	8.03182	-1.8181(2)	6.21372	6.284(8)	1.1
4	9.76308	-2.2623(3)	7.50078	7.575(9)	1.0
9/2	11.6032	-2.7384(3)	8.86482	8.949(10)	0.9
5	13.5462	-3.2445(3)	10.3017	10.386(11)	0.8

• O(4) WF from [Banerjee, Chandrasekharan, Orlando, Reffert '19].

• Large *N* expansion also matched bootstrap results for N = 4 [SMC, Pufu '16; Albayrak, Erramilli, Li, Poland, Xin '21].

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher N.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for $N = 2 \text{ QED}_3$, with O(4) WF dual at finite mass.

- Computed dimensions of monopoles in QED3 with *N* scalars and CS *k* at large *N*, *k* and fixed κ ≡ k/N to subleading order.
 - Generalized previous results for both fermions and scalars at $\kappa = 0$.
- Use scalar monopole calculation to show evidence for dualities:
 - Extrapolating to N = 1 and $\kappa = 0$ matches operators in dual O(2) WF, also matches lattice results for $\Delta_{1/2}$ for higher *N*.
 - Extrapolating to N = 1 and $\kappa = 1$ matches operators in free fermion theory, first dynamical check of 3d bosonization!
- Extrapolating to N = 2 and κ = 0 saturates SO(5) bootstrap bound, suggests Neel-VBS is tricritical with prediction Δ_s ≈ 2.36.
 - Recently matched by lattice calculation and fuzzy sphere!
- Use fermion monopole calculation to show evidence of new phase diagram for N = 2 QED₃, with O(4) WF dual at finite mass.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED₃, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large N, k:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N} = 1$ SQED₃, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

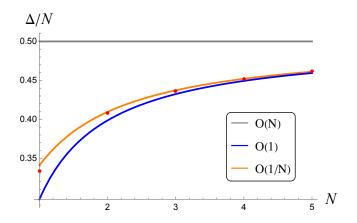
- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.

- Improve large N calculation of monopoles for non-unique scalars to get match to free fermion theory (and check higher 1/N).
- Derive analytic proof of 3d bosonization at large charge.
- Generalize to other 3d gauge theories at large *N*, *k*:
 - QED3 with *N* fermions, use to check duality between QED3 with N = 1 fermion and k = 1/2, and critical O(2) model.
 - $\mathcal{N}=1$ SQED_3, check dualities in that case [Benini, Benvenuti '18] .
 - QCD3 with general finite rank gauge group ($\kappa = 0$ in [Dyer, Mezei, Pufu '15]), check dualities [Aharony, Benini, Hsin, Seiberg '17].
- Bootstrap QED₃, WIP for k = 0 scalar theory with Ning Su et al.
- Test new phase diagram for N = 2 QED3 with lattice simulation.

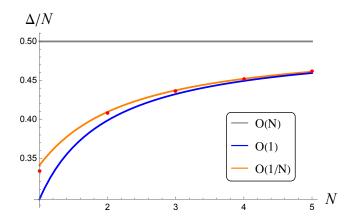
Extra: susy monopoles



• Can compute BPS monopoles in 3d $\mathcal{N} = 2$ QED3 exactly using localization [Klebanov, Pufu, Sachdev, Safdi '12] .

• Nontrivial large N expansion, convergent, and $O(1/N^2)$ is small!

Extra: susy monopoles



• Can compute BPS monopoles in 3d $\mathcal{N} = 2$ QED3 exactly using localization [Klebanov, Pufu, Sachdev, Safdi '12] .

• Nontrivial large N expansion, convergent, and $O(1/N^2)$ is small!