Three-point Functions in ABJM Theory and Integrable Boundary States

Jun-Bao Wu Center for Joint Quantum Studies Tianjin University

Based on **JW** and Peihe Yang, [arxiv: 2408.03643] International Workshop on Exact Methods in Quantum Field Theory and String Theory Southeast University, Nanjing, China

Oct. 31, 2024

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• In conformal field theories, higher point functions of local operators are determined by the two-point and three-point functions.

- In conformal field theories, higher point functions of local operators are determined by the two-point and three-point functions.
- The conformal dimensions of the operators (determining the two-point functions) and structure constants (OPE coefficients) are called conformal data.

- In conformal field theories, higher point functions of local operators are determined by the two-point and three-point functions.
- The conformal dimensions of the operators (determining the two-point functions) and structure constants (OPE coefficients) are called conformal data.
- At weak coupling, they can be computed using perturbation theory.

- In conformal field theories, higher point functions of local operators are determined by the two-point and three-point functions.
- The conformal dimensions of the operators (determining the two-point functions) and structure constants (OPE coefficients) are called conformal data.
- At weak coupling, they can be computed using perturbation theory.
- For theories with holographic duals, the strong coupling limit of conformal data can be calculated using weakly coupling gravity or string theory.

• We hope to compute the conformal dimensions and OPE coefficients non-perturbatively in the field theory side.

- We hope to compute the conformal dimensions and OPE coefficients non-perturbatively in the field theory side.
- It is intensively needed to non-trivially verify the prediction of AdS/CFT correspondence. [Maldacena, 97][Gubser, Klebanov, Polyakov, 98][Witten, 98]

- We hope to compute the conformal dimensions and OPE coefficients non-perturbatively in the field theory side.
- It is intensively needed to non-trivially verify the prediction of AdS/CFT correspondence. [Maldacena, 97][Gubser, Klebanov, Polyakov, 98][Witten, 98]
- It is also needed when the coupling constants are around order one.

• Usually it is very hard to perform such non-perturbative calculations.

- Usually it is very hard to perform such non-perturbative calculations.
- In the last 20+ years, many non-perturbative tools in the field theory have been developed. These methods include integrability, supersymmetric localization, conformal bootstrap... (These constitute the main theme of this conference.)

- Usually it is very hard to perform such non-perturbative calculations.
- In the last 20+ years, many non-perturbative tools in the field theory have been developed. These methods include integrability, supersymmetric localization, conformal bootstrap... (These constitute the main theme of this conference.)
- For $\mathcal{N} = 4$ super Yang-Mills and ABJM theories, integrability is a very powerful non-perturbative tools (mainly in the planar limit).

- Usually it is very hard to perform such non-perturbative calculations.
- In the last 20+ years, many non-perturbative tools in the field theory have been developed. These methods include integrability, supersymmetric localization, conformal bootstrap... (These constitute the main theme of this conference.)
- For $\mathcal{N} = 4$ super Yang-Mills and ABJM theories, integrability is a very powerful non-perturbative tools (mainly in the planar limit).
- This also applies to some cousins (orbifolds, β/γ -deformations, fishnet theories...) of the $\mathcal{N} = 4$ SYM and ABJM theories.

• AdS_5/CFT_4 correspondence states that four-dimensional $\mathcal{N} = 4$ super Yang-Mills theory is dual to type IIB superstring theory on $AdS_5 \times S^5$.

- AdS_5/CFT_4 correspondence states that four-dimensional $\mathcal{N} = 4$ super Yang-Mills theory is dual to type IIB superstring theory on $AdS_5 \times S^5$.
- In the field theory side, integrability means that, in the large N limit, the anomalous dimension matrix (a. k. a. the dilatation operator) of composition operators obtained from perturbative computations gives an integrable Hamiltonian. [Minahan, Zarembo, 02], ...

- AdS_5/CFT_4 correspondence states that four-dimensional $\mathcal{N} = 4$ super Yang-Mills theory is dual to type IIB superstring theory on $AdS_5 \times S^5$.
- In the field theory side, integrability means that, in the large N limit, the anomalous dimension matrix (a. k. a. the dilatation operator) of composition operators obtained from perturbative computations gives an integrable Hamiltonian. [Minahan, Zarembo, 02], ...
- In the string theory side, integrability means that the worldsheet theory of type IIB superstring on $AdS_5 \times S^5$ in the free limit is a two-dimensional integrable field theory. [Benna, Polchinski and Roiban, 03]

 It is reasonable to expect that the integrable structure exists for an arbitrary 't Hooft coupling in the large N limit.

- It is reasonable to expect that the integrable structure exists for an arbitrary 't Hooft coupling in the large N limit.
- The case for ABJM theory is in the same spirit but much more complicated and hard. [Minahan, Zarembo, 08][Bak, Rey, 08][Gromov, Vieira, 08], ···

• The spectral problem in planar $\mathcal{N} = 4$ SYM and ABJM is essentially solved by using the quantum spectral curve (QSC) method. [Gromov, Kazakov, Leurent, Volin, 14], \cdots

- The spectral problem in planar $\mathcal{N} = 4$ SYM and ABJM is essentially solved by using the quantum spectral curve (QSC) method. [Gromov, Kazakov, Leurent, Volin, 14], \cdots
- Using integrability, people also made great progress on three point functions ([Escobedo, Gromov, Sever, Vieira, 10], \cdots , [Basso, Komatsu, Vieira, 15], \cdots) in $\mathcal{N} = 4$ SYM.

- The spectral problem in planar $\mathcal{N} = 4$ SYM and ABJM is essentially solved by using the quantum spectral curve (QSC) method. [Gromov, Kazakov, Leurent, Volin, 14], ...
- Using integrability, people also made great progress on three point functions ([Escobedo, Gromov, Sever, Vieira, 10], \cdots , [Basso, Komatsu, Vieira, 15], \cdots) in $\mathcal{N} = 4$ SYM.
- However the three-point functions of single-trace operators in ABJM theory from integrability were reraly studied. Before our work, only the correlators in the $SU(2) \times SU(2)$ sector were studied [Bissi, Kristjansen, Martirosyan, Orselli, 12].

- The spectral problem in planar $\mathcal{N} = 4$ SYM and ABJM is essentially solved by using the quantum spectral curve (QSC) method. [Gromov, Kazakov, Leurent, Volin, 14], ...
- Using integrability, people also made great progress on three point functions ([Escobedo, Gromov, Sever, Vieira, 10], \cdots , [Basso, Komatsu, Vieira, 15], \cdots) in $\mathcal{N} = 4$ SYM.
- However the three-point functions of single-trace operators in ABJM theory from integrability were reraly studied. Before our work, only the correlators in the $SU(2) \times SU(2)$ sector were studied [Bissi, Kristjansen, Martirosyan, Orselli, 12].
- In this talk, we will study a class of three-point functions in ABJM theory from the viewpoint of integrable boundary states.

 Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin chain play an important role in both quantum quench dynamics and AdS/CFT correspondence. (Integrable boundary states in field theory were first studied in [Ghoshal, Zamolodchikov 93].)

- Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin chain play an important role in both quantum quench dynamics and AdS/CFT correspondence. (Integrable boundary states in field theory were first studied in [Ghoshal, Zamolodchikov 93].)
- Consider that initially a quantum many-body system is at the ground state $|\Psi\rangle$ of the Hamiltonian H_0 .

- Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin chain play an important role in both quantum quench dynamics and AdS/CFT correspondence. (Integrable boundary states in field theory were first studied in [Ghoshal, Zamolodchikov 93].)
- Consider that initially a quantum many-body system is at the ground state $|\Psi\rangle$ of the Hamiltonian H_0 .
- Let us suddenly change H_0 into $H = H_0 + \Delta H$ at t = 0.

- Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin chain play an important role in both quantum quench dynamics and AdS/CFT correspondence. (Integrable boundary states in field theory were first studied in [Ghoshal, Zamolodchikov 93].)
- Consider that initially a quantum many-body system is at the ground state $|\Psi\rangle$ of the Hamiltonian H_0 .
- Let us suddenly change H_0 into $H = H_0 + \Delta H$ at t = 0.
- The state after t = 0 is

$$\Psi(t)\rangle = \exp(-\mathrm{i}\hat{H}t)|\Psi\rangle = \sum_{\alpha} \exp(-\mathrm{i}E_{\alpha}t)\langle\psi_{\alpha}|\Psi\rangle|\psi_{\alpha}\rangle$$
(1)

where $|\psi_{\alpha}\rangle$ is the normalized eigen-state of *H* with eigen-value E_{α} (the case with degeneracy can be treated similarly).

- Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin chain play an important role in both quantum quench dynamics and AdS/CFT correspondence. (Integrable boundary states in field theory were first studied in [Ghoshal, Zamolodchikov 93].)
- Consider that initially a quantum many-body system is at the ground state $|\Psi\rangle$ of the Hamiltonian H_0 .
- Let us suddenly change H_0 into $H = H_0 + \Delta H$ at t = 0.
- The state after t = 0 is

$$\Psi(t)\rangle = \exp(-\mathrm{i}\hat{H}t)|\Psi\rangle = \sum_{\alpha} \exp(-\mathrm{i}E_{\alpha}t)\langle\psi_{\alpha}|\Psi\rangle|\psi_{\alpha}\rangle$$
(1)

where $|\psi_{\alpha}\rangle$ is the normalized eigen-state of *H* with eigen-value E_{α} (the case with degeneracy can be treated similarly).

If *H* is integrable, generically |ψ_α⟩ can be parameterized by Bethe roots, u₁, ..., u_r, and E_α is a function of these roots.

• Then the main task is to compute $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r | \Psi \rangle$.

- Then the main task is to compute $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r | \Psi \rangle$.
- If $|\Psi\rangle$ satisfies certain integrable conditions, then the computations of $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r |\Psi\rangle$ can be greatly simplified.

- Then the main task is to compute $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r | \Psi \rangle$.
- If $|\Psi\rangle$ satisfies certain integrable conditions, then the computations of $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r |\Psi\rangle$ can be greatly simplified.
- In $\mathcal{N} = 4$ SYM and ABJM theory many correlation functions can be also expressed as the overlap between a boundary state $\langle \Psi |$ and a Bethe state $|\mathbf{u_1}, \cdots, \mathbf{u_r} \rangle$.

- Then the main task is to compute $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r | \Psi \rangle$.
- If $|\Psi\rangle$ satisfies certain integrable conditions, then the computations of $\langle \mathbf{u}_1, \cdots, \mathbf{u}_r |\Psi\rangle$ can be greatly simplified.
- In N = 4 SYM and ABJM theory many correlation functions can be also expressed as the overlap between a boundary state (Ψ) and a Bethe state |u₁,..., u_r).
- If this boundary state $\langle \Psi |$ is integrable, we may have compact formulas for such correlation functions.

IBS in AdS/CFT

theories	domain wall	other disordered operator
	one-point functions	one-point functions
$\mathcal{N} = 4$ SYM		't Hooft loops: [Kristjansen,
	[de Leeuw, Kristjansen,	Zarembo, 23]
	Zarembo, 15], · · ·	surface operators:
		unexplored
ABJM	[Kristjansen, Vu,	vortex loops: upexplored
	Zarembo, 21]	voltex loops. unexplored

theories	1-pt functions on the Coulumb branch	$\langle W[C]O\rangle$
$\mathcal{N} = 4$ SYM	[Ivanovskiy, et al., 24]	[Jiang, Komatsu, Vescovi, to appear]
ABJM	unexplored	[Jiang, JW , Yang, 23]

W[C] is a certain BPS Wilson loop, and O is a generic non-BPS single-trace operator.

theories	$\langle \mathcal{D}^\circ \mathcal{D}^\circ \mathcal{O} angle$	$\langle {\cal O}^\circ {\cal O}^\circ {\cal O} angle$
$\mathcal{N} = 4 \; \mathrm{SYM}$	[Jiang, Komatsu, Vescovi, 19]	unexplored
ABJM	[Yang, Jiang, Komatsu, JW , 21]	[JW, Yang, this talk]

 \mathcal{D}° 's and \mathcal{O}° 's are BPS determinant operators (dual to giant gravitons) and BPS single-trace operators, respectively.

• Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d $\mathcal{N} = 6$ Chern-Simons-matter theory.

ABJM theory

- Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d $\mathcal{N} = 6$ Chern-Simons-matter theory.
- The gauge group is $U(N) \times U(N)$ with CS levels (k, -k).

ABJM theory

- Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d $\mathcal{N} = 6$ Chern-Simons-matter theory.
- The gauge group is $U(N) \times U(N)$ with CS levels (k, -k).
- The gauge fields are denoted by A_{μ} and \hat{A}_{μ} , respectively.
ABJM theory

- Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d $\mathcal{N} = 6$ Chern-Simons-matter theory.
- The gauge group is $U(N) \times U(N)$ with CS levels (k, -k).
- The gauge fields are denoted by A_{μ} and \hat{A}_{μ} , respectively.
- The matter fields include complex scalars Y^I and spinors ψ_I $(I = 1, \dots, 4)$ in the bi-fundamental representation of the gauge group.

ABJM theory

- Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d $\mathcal{N} = 6$ Chern-Simons-matter theory.
- The gauge group is $U(N) \times U(N)$ with CS levels (k, -k).
- The gauge fields are denoted by A_{μ} and \hat{A}_{μ} , respectively.
- The matter fields include complex scalars Y^I and spinors ψ_I $(I = 1, \dots, 4)$ in the bi-fundamental representation of the gauge group.
- ABJM gave strong evidence to support this theory to be the low energy effective theory of N M2-branes putting at the tip of C⁴/Z_k.

Quiver diagram of ABJM theory

Figure: The quiver diagram of ABJM theory.

3

イロト イポト イヨト イヨト

• The single-trace operator in the scalar sector of the ABJM theory is

$$\mathcal{O}_C = C_{I_1 \cdots I_L}^{J_1 \cdots J_L} \operatorname{Tr}(Y^{I_1} Y_{J_1}^{\dagger} \cdots Y^{I_L} Y_{J_L}^{\dagger}) \,. \tag{2}$$

The single-trace operator in the scalar sector of the ABJM theory is

$$\mathcal{O}_C = C_{I_1 \cdots I_L}^{J_1 \cdots J_L} \operatorname{Tr}(Y^{I_1} Y_{J_1}^{\dagger} \cdots Y^{I_L} Y_{J_L}^{\dagger}) \,. \tag{2}$$

• The cyclicity property of the trace can be used to choose C to be invariant under the following simultaneous cyclic shift of the upper and lower indices, $C_{I_1\cdots I_L}^{J_1\cdots J_L} = C_{I_2\cdots I_L I_1}^{J_2\cdots J_L J_1}$.

Chiral Primary Operators

• When the tensor *C* is invariant under the respective permutations among the upper and the lower indices, and traceless,

$$C_{I_1\cdots I_L}^{J_1\cdots J_L} = C_{(I_1\cdots I_L)}^{J_1\cdots J_L} = C_{I_1\cdots I_L}^{(J_1\cdots J_L)}, \ C_{I_1\cdots I_L}^{J_1\cdots J_L}\delta_{J_1}^{I_1} = 0,$$
(3)

the operator \mathcal{O}_C is a 1/3-BPS operator.

Chiral Primary Operators

• When the tensor *C* is invariant under the respective permutations among the upper and the lower indices, and traceless,

$$C_{I_1\cdots I_L}^{J_1\cdots J_L} = C_{(I_1\cdots I_L)}^{J_1\cdots J_L} = C_{I_1\cdots I_L}^{(J_1\cdots J_L)}, \ C_{I_1\cdots I_L}^{J_1\cdots J_L}\delta_{J_1}^{I_1} = 0,$$
(3)

the operator \mathcal{O}_C is a 1/3-BPS operator.

• A natural choice of such symmetric traceless tensor *C* is in terms of polarization vectors n_I and \bar{n}^I ,

$$C_{I_1\cdots I_L}^{J_1\cdots J_L} = n_{I_1}\cdots n_{I_L}\bar{n}^{J_1}\cdots \bar{n}^{J_L} , \qquad (4)$$

with BPS condition $n \cdot \bar{n} = 0$.

Chiral Primary Operators

• When the tensor *C* is invariant under the respective permutations among the upper and the lower indices, and traceless,

$$C_{I_1\cdots I_L}^{J_1\cdots J_L} = C_{(I_1\cdots I_L)}^{J_1\cdots J_L} = C_{I_1\cdots I_L}^{(J_1\cdots J_L)}, \ C_{I_1\cdots I_L}^{J_1\cdots J_L}\delta_{J_1}^{I_1} = 0,$$
(3)

the operator \mathcal{O}_C is a 1/3-BPS operator.

 A natural choice of such symmetric traceless tensor C is in terms of polarization vectors n_I and n

^I,

$$C_{I_1\cdots I_L}^{J_1\cdots J_L} = n_{I_1}\cdots n_{I_L}\bar{n}^{J_1}\cdots \bar{n}^{J_L} , \qquad (4)$$

with BPS condition $n \cdot \bar{n} = 0$.

• Notice that \bar{n} does not need to be the complex conjugation of n.

Two point functions

• With this choice, the BPS operator becomes

$$\mathcal{O}_{L}^{\circ}(x,n,\bar{n}) = \operatorname{tr}\left(\left(n\cdot Y\bar{n}\cdot Y^{\dagger}\right)^{L}\right).$$
 (5)

Two point functions

With this choice, the BPS operator becomes

$$\mathcal{O}_{L}^{\circ}(x,n,\bar{n}) = \operatorname{tr}\left(\left(n\cdot Y\bar{n}\cdot Y^{\dagger}\right)^{L}\right).$$
 (5)

 The two-point function of O^o_L's is constrained by symmetries to take the form,

$$\langle \mathcal{O}_{L_1}^{\circ}(x_1)\mathcal{O}_{L_2}^{\circ}(x_2)\rangle = \delta_{L_1,L_2}\mathcal{N}_{\mathcal{O}_{L_1}^{\circ}}(d_{12}d_{21})^{L_1},$$
(6)

with the definitions

$$d_{ij} = \frac{n_i \cdot \bar{n}_j}{|x_{ij}|}, \, x_{ij} = x_i - x_j \,.$$
 (7)

Two point functions

With this choice, the BPS operator becomes

$$\mathcal{O}_{L}^{\circ}(x,n,\bar{n}) = \operatorname{tr}\left(\left(n\cdot Y\bar{n}\cdot Y^{\dagger}\right)^{L}\right).$$
 (5)

 The two-point function of O^o_L's is constrained by symmetries to take the form,

$$\langle \mathcal{O}_{L_1}^{\circ}(x_1)\mathcal{O}_{L_2}^{\circ}(x_2)\rangle = \delta_{L_1,L_2}\mathcal{N}_{\mathcal{O}_{L_1}^{\circ}}(d_{12}d_{21})^{L_1},$$
 (6)

with the definitions

$$d_{ij} = \frac{n_i \cdot \bar{n}_j}{|x_{ij}|}, \ x_{ij} = x_i - x_j.$$
 (7)

At tree-level in the planar limit, we have

$$\mathcal{N}_{\mathcal{O}_L^\circ} = L\lambda^{2L} \,. \tag{8}$$

17/43

Non-BPS Operators

We consider a non-BPS operator

$$\mathcal{O}_C = C_{I_1\cdots I_L}^{J_1\cdots J_L} \operatorname{Tr}(Y^{I_1} Y_{J_1}^{\dagger} \cdots Y^{I_L} Y_{J_L}^{\dagger}).$$
(9)

which can be mapped to the following state

$$|\mathcal{O}_C\rangle = C_{I_1 I_2 \cdots I_L}^{J_1 J_2 \cdots J_L} |I_1, \bar{J}_1, \cdots, I_L, \bar{J}_L\rangle, \qquad (10)$$

of the SU(4) alternating spin chain. The Hamiltonian on this spin chain is from the planar two-loop dilatation operator in the scalar sector. This Hamiltonian has been proven to be integrable [Minahan, Zarembo, 08][Bak, Rey, 08]. And the above state is taken as one of the eigen-states of this Hamiltonian.

Non-BPS Operators

We consider a non-BPS operator

$$\mathcal{D}_C = C_{I_1 \cdots I_L}^{J_1 \cdots J_L} \operatorname{Tr}(Y^{I_1} Y_{J_1}^{\dagger} \cdots Y^{I_L} Y_{J_L}^{\dagger}).$$
(9)

which can be mapped to the following state

$$|\mathcal{O}_C\rangle = C_{I_1 I_2 \cdots I_L}^{J_1 J_2 \cdots J_L} |I_1, \bar{J}_1, \cdots, I_L, \bar{J}_L\rangle, \qquad (10)$$

of the SU(4) alternating spin chain. The Hamiltonian on this spin chain is from the planar two-loop dilatation operator in the scalar sector. This Hamiltonian has been proven to be integrable [Minahan, Zarembo, 08][Bak, Rey, 08]. And the above state is taken as one of the eigen-states of this Hamiltonian.

• Generically this state can be parametrized by the solution $\mathbf{u}, \mathbf{w}, \mathbf{v}$ to the Bethe ansatz equations and zero-momentum condition,

$$|\mathcal{O}\rangle = |\mathbf{u}, \mathbf{w}, \mathbf{v}\rangle$$
. (11)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• We pick up a special class of three-point functions in the scalar sector by considering the twisted-translated frame.

- We pick up a special class of three-point functions in the scalar sector by considering the twisted-translated frame.
- We put all operators along the line $x^{\mu} = (0, 0, a)$.

- We pick up a special class of three-point functions in the scalar sector by considering the twisted-translated frame.
- We put all operators along the line $x^{\mu} = (0, 0, a)$.
- When we translate an operator from the origin to the point (0,0, *a*), we perform the following transformation,

$$Y^1 \to Y^1 + \kappa a Y^4, \ Y^{\dagger}_4 \to Y^{\dagger}_4 - \kappa a Y^{\dagger}_1.$$
(12)

- We pick up a special class of three-point functions in the scalar sector by considering the twisted-translated frame.
- We put all operators along the line $x^{\mu} = (0, 0, a)$.
- When we translate an operator from the origin to the point (0,0, *a*), we perform the following transformation,

$$Y^1 \to Y^1 + \kappa a Y^4, \ Y^{\dagger}_4 \to Y^{\dagger}_4 - \kappa a Y^{\dagger}_1.$$
(12)

• From now on, we choose $\kappa = 1$. The κ -dependence can be recovered by dimensional analysis.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Three-point functions

 Based on the conformal symmetry and R-symmetry, the normalized correlation function of three generic single-trace operators in the twisted-translated frame should take the following form,

$$\frac{\langle \hat{\mathcal{O}}_1(a_1)\hat{\mathcal{O}}_2(a_2)\hat{\mathcal{O}}_3(a_3)\rangle}{\sqrt{\mathcal{N}_{\mathcal{O}_1}\mathcal{N}_{\mathcal{O}_2}\mathcal{N}_{\mathcal{O}_3}}} = \frac{\mathcal{C}_{123}}{a_{12}^{\gamma_{12|3}}a_{23}^{\gamma_{23|1}}a_{31}^{\gamma_{31|2}}},$$
(13)

where

$$\gamma_{ij|k} := (\Delta_i + \Delta_j - \Delta_k) - (J_i + J_j - J_k), \qquad (14)$$

and J is a U(1) R-charge which assigns charges (1/2, 0, 0, -1/2) to Y^1, \dots, Y^4 . [Kazama, Komatsu, Nishimura, 14][Yang, Jiang, Komatsu, **JW**, 21]

- The main focus of this talk is on three-point functions of two 1/3-BPS single-trace operators $\hat{\mathcal{O}}_{L_i}^\circ, i = 1, 2$ and one non-BPS operator $\hat{\mathcal{O}}_3$.
- For this special case we have

$$\frac{\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\rangle}{\sqrt{\mathcal{N}_{\mathcal{O}_{1}^{\circ}}\mathcal{N}_{\mathcal{O}_{2}^{\circ}}\mathcal{N}_{\mathcal{O}_{3}}}} = \mathcal{C}_{123} \left(\frac{a_{12}}{a_{23}a_{31}}\right)^{\Delta_{3}-J_{3}}.$$
 (15)

Three point functions

• In the large N limit, the tree-level three-point function

$$\left\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\right\rangle,\tag{16}$$

is computed from planar Wick contractions, where $\sum_{i=1}^{3} L_i$ pairs of fields are contracted.

Three point functions

• In the large N limit, the tree-level three-point function

$$\left\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\right\rangle,\tag{16}$$

is computed from planar Wick contractions, where $\sum_{i=1}^{3} L_i$ pairs of fields are contracted.

• Without loss of generality, we set $a_3 = 0$ from now on.

• In the large N limit, the tree-level three-point function

$$\left\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\right\rangle , \tag{16}$$

is computed from planar Wick contractions, where $\sum_{i=1}^{3} L_i$ pairs of fields are contracted.

- Without loss of generality, we set $a_3 = 0$ from now on.
- Let us denote the number of the contractions between operators \mathcal{O}_i and \mathcal{O}_j by $l_{ij|k}, k \neq i, j$. It is straightforward to see that $l_{ij|k} = L_i + L_j L_k$.

• In the large N limit, the tree-level three-point function

$$\left\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\right\rangle , \tag{16}$$

is computed from planar Wick contractions, where $\sum_{i=1}^{3} L_i$ pairs of fields are contracted.

- Without loss of generality, we set $a_3 = 0$ from now on.
- Let us denote the number of the contractions between operators \mathcal{O}_i and \mathcal{O}_j by $l_{ij|k}, k \neq i, j$. It is straightforward to see that $l_{ij|k} = L_i + L_j L_k$.
- Notice that $l_{12|3}, l_{23|1}, l_{31|2}$ always have the same odevity. This behavior contrasts with that in $\mathcal{N} = 4$ SYM theory.

Wick contractions

Figure: Tree-level planar Wick contractions.

э

The three point function ⟨Ô[°]₁(a₁)Ô[°]₂(a₂)Ô₃(a₃)⟩ can be expressed using the overlap between a boundary state and a Bethe state. When l_{ii|k}'s are even and 2 ≤ l_{31|2} ≤ 2L₃ − 2, we have

$$\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\rangle = \frac{(-1)^{\frac{l_{12}|3}{2}}L_{1}L_{2}\lambda^{\sum_{i=1}^{3}L_{i}}}{N|a_{1}|^{l_{31}|2}|a_{2}|^{l_{23}|1}}\langle \mathcal{B}_{l_{31}|2}^{\text{even}}|\mathbf{u},\mathbf{w},\mathbf{v}\rangle.$$
(17)

 $\bullet\,$ To make the structure of $|{\cal B}^{\rm even}_{l_{31|2}}\rangle$ clear, We first define

$$\langle \bar{n}_1 @\{1, 2, \cdots, m\}, n_1 @\{1, 2, \cdots, m\}| = (\bar{n}_1)^{I_1} (n_1)_{J_1} \cdots (\bar{n}_1)^{I_m} (n_1)_{J_m} (\bar{n}_2)^{I_{m+1}} (n_2)_{J_{m+1}} \cdots (\bar{n}_2)^{I_1} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L|.$$
(18)

 $\bullet\,$ To make the structure of $|{\cal B}^{\rm even}_{l_{31|2}}\rangle$ clear, We first define

$$\langle \bar{n}_1 @\{1, 2, \cdots, m\}, n_1 @\{1, 2, \cdots, m\}| = (\bar{n}_1)^{I_1} (n_1)_{J_1} \cdots (\bar{n}_1)^{I_m} (n_1)_{J_m} (\bar{n}_2)^{I_{m+1}} (n_2)_{J_{m+1}} \cdots (\bar{n}_2)^{I_1} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L|.$$
(18)

And

$$U_{\text{even}}|I_1, J_1, I_2, J_2 \cdots, I_{L-1}, J_{L-1}, I_L, J_L\rangle = |I_1, J_2, I_2, J_3, \cdots, I_{L-1}, J_L, I_L, J_1\rangle,$$
(19)
$$U_{\text{odd}}|I_1, J_1, I_2, J_2 \cdots, I_{L-1}, J_{L-1}, I_L, J_L\rangle = |I_2, J_1, I_3, J_2, \cdots, I_L, J_{L-1}, I_1, J_L\rangle,$$
(20)

where U_{even} has already been introduced in [Jiang, JW, Yang, 23].

• Then the boundary state $|\mathcal{B}^{\mathrm{even}}_{l_{31|2}}
angle$ in the considered case is,

$$\langle \mathcal{B}_{l_{23|1}}^{\text{even}} | = \langle \mathcal{B}_{l_{23|1}}^{\text{even}, a} | + \langle \mathcal{B}_{l_{23|1}}^{\text{even}, b} |$$
(21)

with

$$\langle \mathcal{B}_l^{\text{even}, a} | = \sum_{j=0}^{L-1} \langle \bar{n}_1 @\{1, 2, \cdots, l/2\}, n_1 @\{1, 2, \cdots, l/2\} | (U_{\text{even}} U_{\text{odd}})^j,$$

$$\langle \mathcal{B}_l^{\text{even}, b} | = \langle \mathcal{B}_l^{\text{even}, a} | U_{\text{even}} \,. \tag{23}$$

(22

• When $l_{31|2} = 0$, the boundary state is

$$\langle \mathcal{B}_0^{\text{even}} | = L(\bar{n}_2)^{I_1} (n_2)_{J_1} \cdots (\bar{n}_2)^{I_L} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L | .$$
 (24)

• When $l_{31|2} = 0$, the boundary state is

$$\langle \mathcal{B}_0^{\text{even}} | = L(\bar{n}_2)^{I_1} (n_2)_{J_1} \cdots (\bar{n}_2)^{I_L} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L | .$$
 (24)

• Then boundary state for the case $l_{31|2} = 2L_3$ is

$$\langle \mathcal{B}_{2L_3}^{\text{even}} | = L \langle n_1 @ \{1, 2, \cdots, L_3\}, \bar{n}_1 @ \{1, 2, \cdots, L_3\} |.$$
 (25)

• When $l_{31|2} = 0$, the boundary state is

$$\langle \mathcal{B}_0^{\text{even}} | = L(\bar{n}_2)^{I_1} (n_2)_{J_1} \cdots (\bar{n}_2)^{I_L} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L | .$$
 (24)

• Then boundary state for the case $l_{31|2} = 2L_3$ is

$$\langle \mathcal{B}_{2L_3}^{\text{even}} | = L \langle n_1 @ \{1, 2, \cdots, L_3\}, \bar{n}_1 @ \{1, 2, \cdots, L_3\} |.$$
 (25)

• In these scenarios, we have either $L_2 = L_3 + L_1$ or $L_1 = L_2 + L_3$, which makes the three-point function an extremal one.

• When $l_{31|2} = 0$, the boundary state is

$$\langle \mathcal{B}_0^{\text{even}} | = L(\bar{n}_2)^{I_1} (n_2)_{J_1} \cdots (\bar{n}_2)^{I_L} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L | .$$
 (24)

• Then boundary state for the case $l_{31|2} = 2L_3$ is

$$\langle \mathcal{B}_{2L_3}^{\text{even}} | = L \langle n_1 @ \{1, 2, \cdots, L_3\}, \bar{n}_1 @ \{1, 2, \cdots, L_3\} |.$$
 (25)

- In these scenarios, we have either $L_2 = L_3 + L_1$ or $L_1 = L_2 + L_3$, which makes the three-point function an extremal one.
- For these cases, the computation of correlators must account for the mixing of O₂ or O₁ with double trace operators, even in the large N limit. [D'Hoker, Freedman, Mathur, 99]

• When $l_{31|2} = 0$, the boundary state is

$$\langle \mathcal{B}_0^{\text{even}} | = L(\bar{n}_2)^{I_1} (n_2)_{J_1} \cdots (\bar{n}_2)^{I_L} (n_2)_{J_L} \langle I_1, J_1, \cdots, I_L, J_L |$$
. (24)

• Then boundary state for the case $l_{31|2} = 2L_3$ is

$$\langle \mathcal{B}_{2L_3}^{\text{even}} | = L \langle n_1 @ \{1, 2, \cdots, L_3\}, \bar{n}_1 @ \{1, 2, \cdots, L_3\} |.$$
 (25)

- In these scenarios, we have either $L_2 = L_3 + L_1$ or $L_1 = L_2 + L_3$, which makes the three-point function an extremal one.
- For these cases, the computation of correlators must account for the mixing of O₂ or O₁ with double trace operators, even in the large N limit. [D'Hoker, Freedman, Mathur, 99]
- We temporarily ignore this mixing.

• When *l*_{31|2} is odd, corresponding boundary states have similar structure.

- When l_{31|2} is odd, corresponding boundary states have similar structure.
- For example, when $l_{31|2} = 1$, we have

$$\langle \mathcal{B}_{1}^{\text{odd}} | = \langle \mathcal{B}_{1}^{\text{odd}, a} | - \langle \mathcal{B}_{1}^{\text{odd}, b} |,$$

$$\langle \mathcal{B}_{1}^{\text{odd}, a} | = \sum_{l=1}^{L} \langle \bar{n}_{1} @ l |,$$

$$\langle \mathcal{B}_{1}^{\text{odd}, b} | = \sum_{l=1}^{L} \langle n_{1} @ l |,$$

$$(27)$$

<ロ> (四) (四) (三) (三) (三)

Integrable boundary states

We want to know among the boundary states |B>, which are integrable.
- We want to know among the boundary states |B>, which are integrable.
- The result [Yang, 22][Yang, JW, 24] is that when $l_{31|2} = 0, 2L_3$ (special extremal) or when $l_{31|2} = 1, 2L_3 - 1$ (special next-to-extremal), the boundary state satisfies the following twisted integrable condition,

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-2-\lambda)|\mathcal{B}\rangle.$$
 (29)

- We want to know among the boundary states |B>, which are integrable.
- The result [Yang, 22][Yang, JW, 24] is that when $l_{31|2} = 0, 2L_3$ (special extremal) or when $l_{31|2} = 1, 2L_3 - 1$ (special next-to-extremal), the boundary state satisfies the following twisted integrable condition,

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-2-\lambda)|\mathcal{B}\rangle.$$
 (29)

• Here $\tau(\lambda)$ is one of the transfer matrices of the ABJM spin chain.

- We want to know among the boundary states |B>, which are integrable.
- The result [Yang, 22][Yang, JW, 24] is that when $l_{31|2} = 0, 2L_3$ (special extremal) or when $l_{31|2} = 1, 2L_3 - 1$ (special next-to-extremal), the boundary state satisfies the following twisted integrable condition,

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-2-\lambda)|\mathcal{B}\rangle.$$
 (29)

- Here $\tau(\lambda)$ is one of the transfer matrices of the ABJM spin chain.
- This twisted integrable condition leads to the selection rule that the necessary condition for ⟨u, w, v|𝔅⟩ being non-zero is that u = -v, w = -w as equations for sets u, w, v.

- We want to know among the boundary states |B>, which are integrable.
- The result [Yang, 22][Yang, JW, 24] is that when $l_{31|2} = 0, 2L_3$ (special extremal) or when $l_{31|2} = 1, 2L_3 - 1$ (special next-to-extremal), the boundary state satisfies the following twisted integrable condition,

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-2-\lambda)|\mathcal{B}\rangle.$$
 (29)

- Here $\tau(\lambda)$ is one of the transfer matrices of the ABJM spin chain.
- This twisted integrable condition leads to the selection rule that the necessary condition for $\langle \mathbf{u}, \mathbf{w}, \mathbf{v} | \mathcal{B} \rangle$ being non-zero is that $\mathbf{u} = -\mathbf{v}, \mathbf{w} = -\mathbf{w}$ as equations for sets $\mathbf{u}, \mathbf{w}, \mathbf{v}$.
- We have numerical results to support that the boundary states the other cases are not integrable.

Special extremal correlators

Figure: Special extremal correlators.

3

イロト イヨト イヨト イヨト

Special next-to-extremal correlators

Figure: Special next-to-extremal correlators.

ABJM spin chain

• The planar two-loop dilatation operators in the scalar sector of ABJM theory can be described by the SU(4) alternating spin chain with the integrable Hamiltonian,

$$H = \frac{\lambda^2}{2} \sum_{l=1}^{2L} \left(2 - 2\mathbb{P}_{l,l+2} + \mathbb{P}_{l,l+2} \mathbb{K}_{l,l+1} + \mathbb{K}_{l,l+1} \mathbb{P}_{l,l+2} \right).$$
(30)

• The planar two-loop dilatation operators in the scalar sector of ABJM theory can be described by the SU(4) alternating spin chain with the integrable Hamiltonian,

$$H = \frac{\lambda^2}{2} \sum_{l=1}^{2L} \left(2 - 2\mathbb{P}_{l,l+2} + \mathbb{P}_{l,l+2} \mathbb{K}_{l,l+1} + \mathbb{K}_{l,l+1} \mathbb{P}_{l,l+2} \right).$$
(30)

 Gauge invariance requires that single-trace operators correspond to an alternating spin chain where odd and even sites are in the fundamental and anti-fundamental representations of the SU(4) R-symmetry group, respectively.

R-matrices

• The SU(4) alternating chain has four R matrices,

$$R_{0j}(\lambda) = \lambda \mathbb{I} + \mathbb{P}_{0j},$$

$$R_{0\bar{j}}(\lambda) = -(\lambda + 2)\mathbb{I} + \mathbb{K}_{0\bar{j}}.$$

$$R_{\bar{0}j}(\lambda) = -(\lambda + 2)\mathbb{I} + \mathbb{K}_{\bar{0}j}$$

$$R_{\bar{0}\bar{j}}(\lambda) = \lambda \mathbb{I} + \mathbb{P}_{\bar{0}\bar{j}}.$$
(31)

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

R-matrices

• The SU(4) alternating chain has four R matrices,

$$R_{0j}(\lambda) = \lambda \mathbb{I} + \mathbb{P}_{0j},$$

$$R_{0\overline{j}}(\lambda) = -(\lambda + 2)\mathbb{I} + \mathbb{K}_{0\overline{j}}.$$

$$R_{\overline{0}j}(\lambda) = -(\lambda + 2)\mathbb{I} + \mathbb{K}_{\overline{0}j}$$

$$R_{\overline{0}j}(\lambda) = \lambda \mathbb{I} + \mathbb{P}_{\overline{0}\overline{j}}.$$
(31)

• Here, 0 and $\overline{0}$ denote the auxiliary space in the fundamental and anti-fundamental representations of the SU(4), respectively.

Monodromy matrices and transfer matrices

We define two monodromy matrices as

$$T_{0}(\lambda) = R_{01}(\lambda)R_{0\bar{1}}(\lambda)\cdots R_{0L}(\lambda)R_{0\bar{L}}(\lambda)$$
(32)
$$\bar{T}_{\bar{0}}(\lambda) = R_{\bar{0}1}(\lambda)R_{\bar{0}\bar{1}}(\lambda)\cdots R_{\bar{0}L}(\lambda)R_{\bar{0}\bar{L}}(\lambda).$$
(33)

Monodromy matrices and transfer matrices

We define two monodromy matrices as

$$T_{0}(\lambda) = R_{01}(\lambda)R_{0\bar{1}}(\lambda)\cdots R_{0L}(\lambda)R_{0\bar{L}}(\lambda)$$
(32)
$$\bar{T}_{\bar{0}}(\lambda) = R_{\bar{0}1}(\lambda)R_{\bar{0}\bar{1}}(\lambda)\cdots R_{\bar{0}L}(\lambda)R_{\bar{0}\bar{L}}(\lambda).$$
(33)

And the transfer matrices are

$$\tau(\lambda) = \operatorname{tr}_0 T_0(\lambda), \quad \bar{\tau}(\lambda) = \operatorname{tr}_{\bar{0}} \bar{T}_{\bar{0}}(\lambda).$$
(34)

Monodromy matrices and transfer matrices

We define two monodromy matrices as

$$T_{0}(\lambda) = R_{01}(\lambda)R_{0\bar{1}}(\lambda)\cdots R_{0L}(\lambda)R_{0\bar{L}}(\lambda)$$
(32)
$$\bar{T}_{\bar{0}}(\lambda) = R_{\bar{0}1}(\lambda)R_{\bar{0}\bar{1}}(\lambda)\cdots R_{\bar{0}L}(\lambda)R_{\bar{0}\bar{L}}(\lambda).$$
(33)

And the transfer matrices are

$$\tau(\lambda) = \operatorname{tr}_0 T_0(\lambda), \quad \bar{\tau}(\lambda) = \operatorname{tr}_{\bar{0}} \bar{T}_{\bar{0}}(\lambda). \tag{34}$$

We have

$$[\tau(u), \tau(v)] = [\bar{\tau}(u), \bar{\tau}(v)] = [\tau(u), \bar{\tau}(v)] = 0,$$
(35)

and the previous Hamiltonian can be obtained from the series expansion of $\log(\tau(u)\overline{\tau}(u))$ at u = 0.

Decomposition of $\tau(\lambda)$

• Let us decompose $\tau(\lambda)$ as

$$\tau(\lambda) = \sum_{m=0}^{L} \sum_{n=0}^{L} \lambda^{L-m} (-\lambda - 2)^{L-n} \mathcal{O}_{m,n} \,.$$
(36)

Here for each term of $\mathcal{O}_{m,n}$, there are $m \mathbb{P}$'s and $n \mathbb{K}$'s inside the trace.

We have

$$\tau(-\lambda - 2) = \sum_{m=0}^{L} \sum_{n=0}^{L} (-\lambda - 2)^{L-m} \lambda^{L-n} \mathcal{O}_{m,n}$$
$$= \sum_{m=0}^{L} \sum_{n=0}^{L} \lambda^{L-m} (-\lambda - 2)^{L-n} \mathcal{O}_{n,m}.$$

イロン 不同 とくほう 不良 とうほ

• If $\left| \mathcal{B} \right\rangle$ satisfies the conditions,

$$\mathcal{O}_{m,n}|\mathcal{B}\rangle = \mathcal{O}_{n,m}|\mathcal{B}\rangle,$$
 (37)

for any $0 \leq m,n \leq L,$ then it satisfies The twisted integrable condition

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-\lambda - 2)|\mathcal{B}\rangle,$$
 (38)

[Yang, 2022]

• If $\left| \mathcal{B} \right\rangle$ satisfies the conditions,

$$\mathcal{O}_{m,n}|\mathcal{B}\rangle = \mathcal{O}_{n,m}|\mathcal{B}\rangle,$$
 (37)

for any $0 \le m, n \le L$, then it satisfies The twisted integrable condition

$$\tau(\lambda)|\mathcal{B}\rangle = \tau(-\lambda - 2)|\mathcal{B}\rangle, \qquad (38)$$

[Yang, 2022]

• We ([Yang, JW, 2024]) proved that both $|\mathcal{B}_1^{\mathrm{odd}, b}\rangle$ and $|\mathcal{B}_1^{\mathrm{odd}, a}\rangle$ satisfy the conditions (37). So they are integrable, as well as $|\mathcal{B}_1^{\mathrm{odd}}\rangle$. This is one of our main results.

• In the proof, we do not use the BPS conditions, $n_1 \cdot \bar{n}_1 = n_2 \cdot \bar{n}_2 = 0$, letting along the twisted-translated frame.

- In the proof, we do not use the BPS conditions,
 n₁ · n
 ₁ = n₂ · n
 ₂ = 0, letting along the twisted-translated frame.
- So this proof show that $|\mathcal{B}_l^{\text{odd}, a}\rangle$ and $|\mathcal{B}_l^{\text{odd}, b}\rangle$ are integrable for l = 1 or $l = 2L_3 1$ without any constraints on n_i 's and \bar{n}_i 's.

The overlaps

• The twisted-translated frame leads to the selection rule,

$$N_{\mathbf{u}} = N_{\mathbf{v}} = N_{\mathbf{w}} \,. \tag{39}$$

The overlaps

• The twisted-translated frame leads to the selection rule,

$$N_{\mathbf{u}} = N_{\mathbf{v}} = N_{\mathbf{w}} \,. \tag{39}$$

• The following result from symmetry

$$\frac{\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\rangle}{\sqrt{\mathcal{N}_{\mathcal{O}_{1}^{\circ}}\mathcal{N}_{\mathcal{O}_{2}^{\circ}}\mathcal{N}_{\mathcal{O}_{3}}}} = \mathcal{C}_{123} \left(\frac{a_{12}}{a_{23}a_{31}}\right)^{\Delta_{3}-J_{3}}, \quad (40)$$

further leads to the constraints,

$$N_{\mathbf{u}} \le \min(l_{31|2}, l_{23|1}) \,. \tag{41}$$

イロン イボン イヨン 一日

38/43

The overlaps

The twisted-translated frame leads to the selection rule,

$$N_{\mathbf{u}} = N_{\mathbf{v}} = N_{\mathbf{w}} \,. \tag{39}$$

• The following result from symmetry

$$\frac{\langle \hat{\mathcal{O}}_{1}^{\circ}(a_{1})\hat{\mathcal{O}}_{2}^{\circ}(a_{2})\hat{\mathcal{O}}_{3}(a_{3})\rangle}{\sqrt{\mathcal{N}_{\mathcal{O}_{1}^{\circ}}\mathcal{N}_{\mathcal{O}_{2}^{\circ}}\mathcal{N}_{\mathcal{O}_{3}}}} = \mathcal{C}_{123} \left(\frac{a_{12}}{a_{23}a_{31}}\right)^{\Delta_{3}-J_{3}}, \qquad (40)$$

further leads to the constraints,

$$N_{\mathbf{u}} \le \min(l_{31|2}, l_{23|1}). \tag{41}$$

イロン イボン イヨン 一日

 Using this constraint and coordinate Bethe ansatz (CBA), all overlaps from the three point functions in the integrable cases are computed.

An example

• Consider the case with $l_{31|2} = N_{\mathbf{u}} = N_{\mathbf{w}} = N_{\mathbf{v}} = 1$, the Bethe ansatz equations are

$$1 = \left(\frac{u+\frac{i}{2}}{u-\frac{i}{2}}\right)^{L_3} \frac{u-w+\frac{i}{2}}{u-w-\frac{i}{2}}, \qquad (42)$$

$$1 = \frac{w-u+\frac{i}{2}}{w-u-\frac{i}{2}} \qquad (43)$$

$$1 = \left(\frac{v+\frac{i}{2}}{v-\frac{i}{2}}\right)^{L_3} \frac{v-w+\frac{i}{2}}{v-w-\frac{i}{2}}, \qquad (44)$$

and the zero-momentum condition is

$$1 = \frac{u + \frac{i}{2}}{u - \frac{i}{2}} \frac{v + \frac{i}{2}}{v - \frac{i}{2}}.$$
(45)

39/43

An example

• The solutions are [Bak, Rey, 08]

$$u = -v = \frac{1}{2} \cot \frac{k\pi}{L_3 + 1}, \ w = 0,$$
 (46)

with $k = 1, \dots, L_3$.

An example

• The solutions are [Bak, Rey, 08]

$$u = -v = \frac{1}{2} \cot \frac{k\pi}{L_3 + 1}, \ w = 0,$$
 (46)

with $k = 1, \dots, L_3$.

• By constructing eigenstates via CBA and Gaudin formula for the norms [Yang, Jiang, Komatsu, **JW**, 21], we can get

$$C_{123} = \frac{(-1)^{L_2+1} \operatorname{sgn}(a_1 a_2 a_{12}) \sqrt{2L_1 L_2 L_3} \exp \frac{2\pi k i}{L_3+1}}{N \sqrt{L_3+1}} \,. \tag{47}$$

イロン イボン イヨン 一日

Conclusion

• We found that the boundary state from the two BPS operators is intergrable only when the correlator is special extremal $(l_{31|2} = 0, 2L_3)$ or special next-to-extremal $(l_{31|2} = 1, 2L_3 - 1)$.

Conclusion

- We found that the boundary state from the two BPS operators is intergrable only when the correlator is special extremal $(l_{31|2} = 0, 2L_3)$ or special next-to-extremal $(l_{31|2} = 1, 2L_3 1)$.
- For these integrable case, we computed the three-point functions using the constraints from symmetries and CBA.

Outlook

• It should be interesting to revisit the three-point function $\langle \mathcal{O}^{\circ} \mathcal{O}^{\circ} \mathcal{O} \rangle$ in $\mathcal{N} = 4$ SYM [Escobedo, Gromov, Sever, Vieira, 10] to determine when the boundary state from the two BPS operators is integrable.

Outlook

- It should be interesting to revisit the three-point function ⟨O°O°O⟩ in N = 4 SYM [Escobedo, Gromov, Sever, Vieira, 10] to determine when the boundary state from the two BPS operators is integrable.
- It is also desirable to compute more general three-point functions in ABJM theory to aid the development of hexagon program [Basso, komatsu, Vieira, 15] for this theory.

Thanks for Your Attention!