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Introduction

In conformal field theories, higher point functions of local operators
are determined by the two-point and three-point functions.

The conformal dimensions of the operators (determining the
two-point functions) and structure constants (OPE coefficients)
are called conformal data.
At weak coupling, they can be computed using perturbation
theory.
For theories with holographic duals, the strong coupling limit of
conformal data can be calculated using weakly coupling gravity or
string theory.
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Introduction

We hope to compute the conformal dimensions and OPE
coefficients non-perturbatively in the field theory side.

It is intensively needed to non-trivially verify the prediction of
AdS/CFT correspondence. [Maldacena, 97][Gubser, Klebanov,
Polyakov, 98][Witten, 98]
It is also needed when the coupling constants are around order
one.
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Introduction

Usually it is very hard to perform such non-perturbative
calculations.

In the last 20+ years, many non-perturbative tools in the field
theory have been developed. These methods include integrability,
supersymmetric localization, conformal bootstrap... (These
constitute the main theme of this conference. )
For N = 4 super Yang-Mills and ABJM theories, integrability is a
very powerful non-perturbative tools (mainly in the planar limit).
This also applies to some cousins (orbifolds, β/γ-deformations,
fishnet theories...) of the N = 4 SYM and ABJM theories.
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Introduction

AdS5/CFT4 correspondence states that four-dimensional N = 4
super Yang-Mills theory is dual to type IIB superstring theory on
AdS5 × S5.

In the field theory side, integrability means that, in the large N limit,
the anomalous dimension matrix (a. k. a. the dilatation operator)
of composition operators obtained from perturbative computations
gives an integrable Hamiltonian. [Minahan, Zarembo, 02], · · ·
In the string theory side, integrability means that the worldsheet
theory of type IIB superstring on AdS5 × S5 in the free limit is a
two-dimensional integrable field theory. [Benna, Polchinski and
Roiban, 03]
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Introduction

It is reasonable to expect that the integrable structure exists for an
arbitrary ’t Hooft coupling in the large N limit.

The case for ABJM theory is in the same spirit but much more
complicated and hard. [Minahan, Zarembo, 08][Bak, Rey,
08][Gromov, Vieira, 08], · · ·
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Introduction

The spectral problem in planar N = 4 SYM and ABJM is
essentially solved by using the quantum spectral curve (QSC)
method. [Gromov, Kazakov, Leurent, Volin, 14], · · ·

Using integrability, people also made great progress on three point
functions ([Escobedo, Gromov, Sever, Vieira, 10], · · · , [Basso,
Komatsu, Vieira, 15], · · · ) in N = 4 SYM.
However the three-point functions of single-trace operators in
ABJM theory from integrability were reraly studied. Before our
work, only the correlators in the SU(2)× SU(2) sector were
studied [Bissi, Kristjansen, Martirosyan, Orselli, 12].
In this talk, we will study a class of three-point functions in ABJM
theory from the viewpoint of integrable boundary states.
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Integrable boundary state (IBS)

Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin
chain play an important role in both quantum quench dynamics
and AdS/CFT correspondence. (Integrable boundary states in
field theory were first studied in [Ghoshal, Zamolodchikov 93].)

Consider that initially a quantum many-body system is at the
ground state |Ψ⟩ of the Hamiltonian H0.
Let us suddenly change H0 into H = H0 +∆H at t = 0.
The state after t = 0 is

|Ψ(t)⟩ = exp(−iĤt)|Ψ⟩ =
∑
α

exp(−iEαt)⟨ψα|Ψ⟩|ψα⟩ (1)

where |ψα⟩ is the normalized eigen-state of H with eigen-value Eα

(the case with degeneracy can be treated similarly).
If H is integrable, generically |ψα⟩ can be parameterized by Bethe
roots, u1, · · · ,ur, and Eα is a function of these roots.
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IBS

Then the main task is to compute ⟨u1, · · · ,ur|Ψ⟩.

If |Ψ⟩ satisfies certain integrable conditions, then the computations
of ⟨u1, · · · ,ur|Ψ⟩ can be greatly simplified.
In N = 4 SYM and ABJM theory many correlation functions can
be also expressed as the overlap between a boundary state ⟨Ψ|
and a Bethe state |u1, · · · ,ur⟩.
If this boundary state ⟨Ψ| is integrable, we may have compact
formulas for such correlation functions.
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IBS in AdS/CFT

theories
domain wall

one-point functions
other disordered operator

one-point functions

N = 4 SYM
[de Leeuw, Kristjansen,

Zarembo, 15], · · ·

’t Hooft loops: [Kristjansen,
Zarembo, 23]

surface operators:
unexplored

ABJM
[Kristjansen, Vu,

Zarembo, 21]
vortex loops: unexplored
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IBS in AdS/CFT

theories
1-pt functions

on the Coulumb branch
⟨W [C]O⟩

N = 4 SYM [Ivanovskiy, et al., 24]
[Jiang, Komatsu,

Vescovi, to appear]

ABJM unexplored
[Jiang, JW,
Yang, 23]

W [C] is a certain BPS Wilson loop, and O is a generic non-BPS
single-trace operator.
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IBS in AdS/CFT

theories ⟨D◦D◦O⟩ ⟨O◦O◦O⟩

N = 4 SYM
[Jiang, Komatsu,

Vescovi, 19]
unexplored

ABJM
[Yang, Jiang,

Komatsu, JW, 21]
[JW, Yang, this talk]

D◦’s and O◦’s are BPS determinant operators (dual to giant gravitons)
and BPS single-trace operators, respectively.
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ABJM theory

Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d
N = 6 Chern-Simons-matter theory.

The gauge group is U(N)× U(N) with CS levels (k,−k).
The gauge fields are denoted by Aµ and Âµ, respectively.
The matter fields include complex scalars Y I and spinors ψI

(I = 1, · · · , 4) in the bi-fundamental representation of the gauge
group.
ABJM gave strong evidence to support this theory to be the low
energy effective theory of N M2-branes putting at the tip of C4/Zk.
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Quiver diagram of ABJM theory

Figure: The quiver diagram of ABJM theory.

14 / 43



Single-trace operators

The single-trace operator in the scalar sector of the ABJM theory
is

OC = CJ1···JL
I1···IL Tr(Y I1Y †

J1
· · ·Y ILY †

JL
) . (2)

The cyclicity property of the trace can be used to choose C to be
invariant under the following simultaneous cyclic shift of the upper
and lower indices, CJ1···JL

I1···IL = CJ2···JLJ1
I2···ILI1 .
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Chiral Primary Operators

When the tensor C is invariant under the respective permutations
among the upper and the lower indices, and traceless,

CJ1···JL
I1···IL = CJ1···JL

(I1···IL) = C
(J1···JL)
I1···IL , CJ1···JL

I1···IL δ
I1
J1

= 0 , (3)

the operator OC is a 1/3-BPS operator.

A natural choice of such symmetric traceless tensor C is in terms
of polarization vectors nI and n̄I ,

CJ1···JL
I1···IL = nI1 · · ·nIL n̄

J1 · · · n̄JL , (4)

with BPS condition n · n̄ = 0.
Notice that n̄ does not need to be the complex conjugation of n.
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Two point functions

With this choice, the BPS operator becomes

O◦
L(x, n, n̄) = tr

((
n · Y n̄ · Y †

)L)
. (5)

The two-point function of O◦
L’s is constrained by symmetries to

take the form,

⟨O◦
L1
(x1)O◦

L2
(x2)⟩ = δL1,L2NO◦

L1
(d12d21)

L1 , (6)

with the definitions

dij =
ni · n̄j
|xij |

, xij = xi − xj . (7)

At tree-level in the planar limit, we have

NO◦
L
= Lλ2L . (8)
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Non-BPS Operators

We consider a non-BPS operator

OC = CJ1···JL
I1···IL Tr(Y I1Y †

J1
· · ·Y ILY †

JL
) . (9)

which can be mapped to the following state

|OC⟩ = CJ1J2···JL
I1I2···IL |I1, J̄1, · · · , IL, J̄L⟩ , (10)

of the SU(4) alternating spin chain. The Hamiltonian on this spin
chain is from the planar two-loop dilatation operator in the scalar
sector. This Hamiltonian has been proven to be integrable
[Minahan, Zarembo, 08][Bak, Rey, 08]. And the above state is
taken as one of the eigen-states of this Hamiltonian.
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Twisted-translated frame

We pick up a special class of three-point functions in the scalar
sector by considering the twisted-translated frame.

We put all operators along the line xµ = (0, 0, a).
When we translate an operator from the origin to the point (0, 0, a),
we perform the following transformation,

Y 1 → Y 1 + κaY 4, Y †
4 → Y †

4 − κaY †
1 . (12)

From now on, we choose κ = 1. The κ-depedenece can be
recovered by dimensional analysis.
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Three-point functions

Based on the conformal symmetry and R-symmetry, the
normalized correlation function of three generic single-trace
operators in the twisted-translated frame should take the following
form,

⟨Ô1(a1)Ô2(a2)Ô3(a3)⟩√
NO1NO2NO3

=
C123

a
γ12|3
12 a

γ23|1
23 a

γ31|2
31

, (13)

where
γij|k := (∆i +∆j −∆k)− (Ji + Jj − Jk) , (14)

and J is a U(1) R-charge which assigns charges (1/2, 0, 0,−1/2)
to Y 1, · · · , Y 4. [Kazama, Komatsu, Nishimura, 14][Yang, Jiang,
Komatsu, JW, 21]
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Three-point functions

The main focus of this talk is on three-point functions of two
1/3-BPS single-trace operators Ô◦

Li
, i = 1, 2 and one non-BPS

operator Ô3.
For this special case we have

⟨Ô◦
1(a1)Ô◦

2(a2)Ô3(a3)⟩√
NO◦

1
NO◦

2
NO3

= C123
(

a12
a23a31

)∆3−J3

. (15)
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Three point functions

In the large N limit, the tree-level three-point function

⟨Ô◦
1(a1)Ô◦

2(a2)Ô3(a3)⟩ , (16)

is computed from planar Wick contractions, where
∑3

i=1 Li pairs
of fields are contracted.

Without loss of generality, we set a3 = 0 from now on.
Let us denote the number of the contractions between operators
Oi and Oj by lij|k, k ̸= i, j. It is straightforward to see that
lij|k = Li + Lj − Lk.
Notice that l12|3, l23|1, l31|2 always have the same odevity. This
behavior contrasts with that in N = 4 SYM theory.
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Wick contractions

Figure: Tree-level planar Wick contractions.
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Boundary states

The three point function ⟨Ô◦
1(a1)Ô◦

2(a2)Ô3(a3)⟩ can be expressed
using the overlap between a boundary state and a Bethe state.
When lij|k’s are even and 2 ≤ l31|2 ≤ 2L3 − 2, we have

⟨Ô◦
1(a1)Ô◦

2(a2)Ô3(a3)⟩ =
(−1)

l12|3
2 L1L2λ

∑3
i=1 Li

N |a1|l31|2 |a2|l23|1
⟨Beven

l31|2
|u,w,v⟩ .

(17)
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Boundary states

To make the structure of |Beven
l31|2

⟩ clear, We first define

⟨n̄1@{1, 2, · · · ,m}, n1@{1, 2, · · · ,m}| =
(n̄1)

I1(n1)J1 · · · (n̄1)Im(n1)Jm(n̄2)Im+1(n2)Jm+1

· · · (n̄2)I1(n2)JL⟨I1, J1, · · · , IL, JL| . (18)

And

Ueven|I1, J1, I2, J2 · · · , IL−1, JL−1, IL, JL⟩
= |I1, J2, I2, J3, · · · , IL−1, JL, IL, J1⟩ , (19)
Uodd|I1, J1, I2, J2 · · · , IL−1, JL−1, IL, JL⟩
= |I2, J1, I3, J2, · · · , IL, JL−1, I1, JL⟩ , (20)

where Ueven has already been introduced in [Jiang, JW, Yang, 23].
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Boundary states

Then the boundary state |Beven
l31|2

⟩ in the considered case is,

⟨Beven
l23|1

| = ⟨Beven, a
l23|1

|+ ⟨Beven, b
l23|1

| (21)

with

⟨Beven, a
l | =

L−1∑
j=0

⟨n̄1@{1, 2, · · · , l/2}, n1@{1, 2, · · · , l/2}|(UevenUodd)
j ,

(22)

⟨Beven, b
l | = ⟨Beven, a

l |Ueven . (23)
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Boundary states

When l31|2 = 0, the boundary state is

⟨Beven
0 | = L(n̄2)

I1(n2)J1 · · · (n̄2)IL(n2)JL⟨I1, J1, · · · , IL, JL| . (24)

Then boundary state for the case l31|2 = 2L3 is

⟨Beven
2L3

| = L⟨n1@{1, 2, · · · , L3}, n̄1@{1, 2, · · · , L3}| . (25)

In these scenarios, we have either L2 = L3 + L1 or L1 = L2 + L3,
which makes the three-point function an extremal one.
For these cases, the computation of correlators must account for
the mixing of O2 or O1 with double trace operators, even in the
large N limit. [D’Hoker, Freedman, Mathur, 99]
We temporarily ignore this mixing.
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Boundary states

When l31|2 is odd, corresponding boundary states have similar
structure.

For example, when l31|2 = 1, we have

⟨Bodd
1 | = ⟨Bodd, a

1 | − ⟨Bodd, b
1 | , (26)

⟨Bodd, a
1 | =

L∑
l=1

⟨n̄1@l| , (27)

⟨Bodd, b
1 | =

L∑
l=1

⟨n1@l|, (28)
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Integrable boundary states

We want to know among the boundary states |B⟩, which are
integrable.

The result [Yang, 22][Yang, JW, 24] is that when l31|2 = 0, 2L3

(special extremal) or when l31|2 = 1, 2L3 − 1 (special
next-to-extremal), the boundary state satisfies the following
twisted integrable condition,

τ(λ)|B⟩ = τ(−2− λ)|B⟩ . (29)

Here τ(λ) is one of the transfer matrices of the ABJM spin chain.
This twisted integrable condition leads to the selection rule that
the necessary condition for ⟨u,w,v|B⟩ being non-zero is that
u = −v,w = −w as equations for sets u,w,v.
We have numerical results to support that the boundary states the
other cases are not integrable.
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Special extremal correlators

Figure: Special extremal correlators.
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Special next-to-extremal correlators

Figure: Special next-to-extremal correlators.
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ABJM spin chain

The planar two-loop dilatation operators in the scalar sector of
ABJM theory can be described by the SU(4) alternating spin
chain with the integrable Hamiltonian,

H =
λ2

2

2L∑
l=1

(2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) . (30)

Gauge invariance requires that single-trace operators correspond
to an alternating spin chain where odd and even sites are in the
fundamental and anti-fundamental representations of the SU(4)
R-symmetry group, respectively.
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R-matrices

The SU(4) alternating chain has four R matrices,

R0j(λ) = λI+ P0j ,

R0j̄(λ) = −(λ+ 2)I+K0j̄ .

R0̄j(λ) = −(λ+ 2)I+K0̄j

R0̄j̄(λ) = λI+ P0̄j̄ .

(31)

Here, 0 and 0̄ denote the auxiliary space in the fundamental and
anti-fundamental representations of the SU(4), respectively.
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Monodromy matrices and transfer matrices

We define two monodromy matrices as

T0(λ) = R01(λ)R01̄(λ) · · ·R0L(λ)R0L̄(λ) (32)
T̄0̄(λ) = R0̄1(λ)R0̄1̄(λ) · · ·R0̄L(λ)R0̄L̄(λ). (33)

And the transfer matrices are

τ(λ) = tr0T0(λ), τ̄(λ) = tr0̄T̄0̄(λ). (34)

We have

[τ(u), τ(v)] = [τ̄(u), τ̄(v)] = [τ(u), τ̄(v)] = 0 , (35)

and the previous Hamiltonian can be obtained from the series
expansion of log(τ(u)τ̄(u)) at u = 0.
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Decomposition of τ(λ)

Let us decompose τ(λ) as

τ(λ) =

L∑
m=0

L∑
n=0

λL−m(−λ− 2)L−nOm,n . (36)

Here for each term of Om,n, there are m P’s and n K’s inside the
trace.
We have

τ(−λ− 2) =

L∑
m=0

L∑
n=0

(−λ− 2)L−mλL−nOm,n

=

L∑
m=0

L∑
n=0

λL−m(−λ− 2)L−nOn,m .
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Integrable boundary states

If |B⟩ satisfies the conditions,

Om,n|B⟩ = On,m|B⟩ , (37)

for any 0 ≤ m,n ≤ L, then it satisfies The twisted integrable
condition

τ(λ)|B⟩ = τ(−λ− 2)|B⟩ , (38)

[Yang, 2022]

We ([Yang, JW, 2024]) proved that both |Bodd, b
1 ⟩ and |Bodd, a

1 ⟩
satisfy the conditions (37). So they are integrable, as well as
|Bodd

1 ⟩. This is one of our main results.
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Integrable boundary states

In the proof, we do not use the BPS conditions,
n1 · n̄1 = n2 · n̄2 = 0, letting along the twisted-translated frame.

So this proof show that |Bodd, a
l ⟩ and |Bodd, b

l ⟩ are integrable for
l = 1 or l = 2L3 − 1 without any constraints on ni’s and n̄i’s.
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The overlaps

The twisted-translated frame leads to the selection rule,

Nu = Nv = Nw . (39)

The following result from symmetry

⟨Ô◦
1(a1)Ô◦

2(a2)Ô3(a3)⟩√
NO◦

1
NO◦

2
NO3

= C123
(

a12
a23a31

)∆3−J3

, (40)

further leads to the constraints,

Nu ≤ min(l31|2, l23|1) . (41)

Using this constraint and coordinate Bethe ansatz (CBA), all
overlaps from the three point functions in the integrable cases are
computed.
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An example

Consider the case with l31|2 = Nu = Nw = Nv = 1, the Bethe
ansatz equations are

1 =

(
u+ i

2

u− i
2

)L3
u− w + i

2

u− w − i
2

, (42)

1 =
w − u+ i

2

w − u− i
2

(43)

1 =

(
v + i

2

v − i
2

)L3
v − w + i

2

v − w − i
2

, (44)

and the zero-momentum condition is

1 =
u+ i

2

u− i
2

v + i
2

v − i
2

. (45)
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An example

The solutions are [Bak, Rey, 08]

u = −v =
1

2
cot

kπ

L3 + 1
, w = 0 , (46)

with k = 1, · · · , L3.

By constructing eigenstates via CBA and Gaudin formula for the
norms [Yang, Jiang, Komatsu, JW, 21], we can get

C123 =
(−1)L2+1sgn(a1a2a12)

√
2L1L2L3 exp

2πki
L3+1

N
√
L3 + 1

. (47)
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Conclusion

We found that the boundary state from the two BPS operators is
intergrable only when the correlator is special extremal
(l31|2 = 0, 2L3) or special next-to-extremal (l31|2 = 1, 2L3 − 1).

For these integrable case, we computed the three-point functions
using the constraints from symmetries and CBA.
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Outlook

It should be interesting to revisit the three-point function ⟨O◦O◦O⟩
in N = 4 SYM [Escobedo, Gromov, Sever, Vieira, 10] to determine
when the boundary state from the two BPS operators is integrable.

It is also desirable to compute more general three-point functions
in ABJM theory to aid the development of hexagon program
[Basso, komatsu, Vieira, 15] for this theory.
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Thanks for Your Attention !
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