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Introduction

@ In conformal field theories, higher point functions of local operators
are determined by the two-point and three-point functions.

@ The conformal dimensions of the operators (determining the
two-point functions) and structure constants (OPE coefficients)
are called conformal data.

@ At weak coupling, they can be computed using perturbation
theory.

@ For theories with holographic duals, the strong coupling limit of
conformal data can be calculated using weakly coupling gravity or
string theory.
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Introduction

@ We hope to compute the conformal dimensions and OPE
coefficients non-perturbatively in the field theory side.

@ ltis intensively needed to non-trivially verify the prediction of
AdS/CFT correspondence. [Maldacena, 97][Gubser, Klebanov,
Polyakov, 98][Witten, 98]

@ lItis also needed when the coupling constants are around order
one.
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@ Usually it is very hard to perform such non-perturbative
calculations.

@ In the last 20+ years, many non-perturbative tools in the field
theory have been developed. These methods include integrability,
supersymmetric localization, conformal bootstrap... (These
constitute the main theme of this conference. )

@ For NV = 4 super Yang-Mills and ABJM theories, integrability is a
very powerful non-perturbative tools (mainly in the planar limit).

@ This also applies to some cousins (orbifolds, /3/~-deformations,
fishnet theories...) of the N’ = 4 SYM and ABJM theories.
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@ AdSs/CFT, correspondence states that four-dimensional N = 4
super Yang-Mills theory is dual to type IIB superstring theory on
AdS5 X 55.

@ In the field theory side, integrability means that, in the large N limit,
the anomalous dimension matrix (a. k. a. the dilatation operator)
of composition operators obtained from perturbative computations
gives an integrable Hamiltonian. [Minahan, Zarembo, 02], - - -

@ In the string theory side, integrability means that the worldsheet
theory of type 1IB superstring on AdSs x S° in the free limit is a

two-dimensional integrable field theory. [Benna, Polchinski and
Roiban, 03]
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Introduction

@ It is reasonable to expect that the integrable structure exists for an
arbitrary 't Hooft coupling in the large N limit.

@ The case for ABJM theory is in the same spirit but much more
complicated and hard. [Minahan, Zarembo, 08][Bak, Rey,
08][Gromov, Vieira, 08], - - -
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@ The spectral problem in planar N' = 4 SYM and ABJM is
essentially solved by using the quantum spectral curve (QSC)
method. [Gromov, Kazakov, Leurent, Volin, 14], - - -

@ Using integrability, people also made great progress on three point
functions ([Escobedo, Gromov, Sever, Vieira, 10], - - - , [Basso,
Komatsu, Vieira, 15], ---) in A/ = 4 SYM.

@ However the three-point functions of single-trace operators in
ABJM theory from integrability were reraly studied. Before our
work, only the correlators in the SU(2) x SU(2) sector were
studied [Bissi, Kristjansen, Martirosyan, Orselli, 12].

@ In this talk, we will study a class of three-point functions in ABJM
theory from the viewpoint of integrable boundary states.
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Integrable boundary state (IBS)

@ Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin
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and AdS/CFT correspondence. (Integrable boundary states in
field theory were first studied in [Ghoshal, Zamolodchikov 93].)
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Integrable boundary states [Piroli, Pozsgay, Vernier, 17] of spin
chain play an important role in both quantum quench dynamics
and AdS/CFT correspondence. (Integrable boundary states in
field theory were first studied in [Ghoshal, Zamolodchikov 93].)
Consider that initially a quantum many-body system is at the
ground state |¥) of the Hamiltonian Hy.

Let us suddenly change Hy into H = Hy+ AH att = 0.

The state aftert =0 is

(1)) = exp(—iH)|¥) = ZGXP —iEat)(YalV)[¢a) (1)

where |1,) is the normalized eigen-state of H with eigen-value E,
(the case with degeneracy can be treated similarly).

If H is integrable, generically |¢,) can be parameterized by Bethe
roots, uy,--- ,uy, and E, is a function of these roots.
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IBS

@ Then the main task is to compute (uy, - -, u,|¥).

@ If |I) satisfies certain integrable conditions, then the computations
of (uy,--- ,u,|¥) can be greatly simplified.

@ In /=4 SYM and ABJM theory many correlation functions can
be also expressed as the overlap between a boundary state (¥|
and a Bethe state |uy, -, u,).

@ If this boundary state (¥| is integrable, we may have compact
formulas for such correlation functions.
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N
IBS in AdS/CFT

theories domain wall other disordered o_perator
one-point functions one-point functions

't Hooft loops: [Kristjansen,

[de Leeuw, Kristjansen, Zarembo, 23]
N =45YM Zarembo, 15], - - - surface operators:
unexplored
ABJM [Krisiansen, Vu, vortex loops: unexplored
Zarembo, 21] '
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N
IBS in AdS/CFT

1-pt functions
on the Coulumb branch

N =4 SYM | [lvanovskiy, et al., 24]

theories (W[C10)

[Jiang, Komatsu,
Vescovi, to appear]
[Jiang, JW,
Yang, 23]

ABJM unexplored

WC] is a certain BPS Wilson loop, and O is a generic non-BPS
single-trace operator.
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N
IBS in AdS/CFT

theories (D°D°O) (0°0°0)
B [Jiang, Komatsu,
N =4 8SYM Vescovi, 19] unexplored
[Yang, Jiang, .
ABJM Komatsu, JW, 21] [JW, Yang, this talk]

D°’s and O°’s are BPS determinant operators (dual to giant gravitons)
and BPS single-trace operators, respectively.
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@ Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d
N = 6 Chern-Simons-matter theory.
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ABJM theory

@ Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d
N = 6 Chern-Simons-matter theory.

@ The gauge group is U(N) x U(N) with CS levels (k, —k).
@ The gauge fields are denoted by A,, and /1“, respectively.

@ The matter fields include complex scalars Y/ and spinors v;
(I =1,---,4) in the bi-fundamental representation of the gauge
group.

@ ABJM gave strong evidence to support this theory to be the low
energy effective theory of N M2-branes putting at the tip of C*/Z;.
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Quiver diagram of ABJM theory

Figure: The quiver diagram of ABJM theory.

[m]

=

nae
14/43



Single-trace operators

@ The single-trace operator in the scalar sector of the ABJM theory
is
Oc = Oyl (YY) - YIy) ). @)
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Single-trace operators

@ The single-trace operator in the scalar sector of the ABJM theory
is
Oc = Oyl (YY) - YIy) ). @)

@ The cyclicity property of the trace can be used to choose C' to be
invariant under the following simultaneous cyclic shift of the upper
and lower indices, C;%/F = 2/
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Chiral Primary Operators

@ When the tensor C is invariant under the respective permutations
among the upper and the lower indices, and traceless,

JiJp _ ~JiveJdn  ~(J1eJr) JiJp sl
Criipk = Oy = oy ol =0, (3)

the operator O¢ is a 1/3-BPS operator.
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@ When the tensor C is invariant under the respective permutations
among the upper and the lower indices, and traceless,

JiJp _ ~JiveJdn  ~(J1eJr) JiJp sl
Criipk = Oy = oy ol =0, (3)

the operator O¢ is a 1/3-BPS operator.

@ A natural choice of such symmetric traceless tensor C'is in terms
of polarization vectors n; and 7/,
Jyd _J _J
ChlmILL =nn-nn L...p’L (4)

with BPS condition n - n = 0.
@ Notice that » does not need to be the complex conjugation of n.
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Two point functions

@ With this choice, the BPS operator becomes

O (z,n,n) = tr <<n -Yn- YT>L> . (5)
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Two point functions

@ With this choice, the BPS operator becomes

O (z,n,n) = tr <<n -Yn- YT>L> . (5)

@ The two-point function of O} ’s is constrained by symmetries to
take the form,

(O, (21)0L, (22)) = 0Ly, 1. Nog, (di2do1)™, (6)

with the definitions

NG - N

dij -

= Tiji = X; — Ti. 7
oyl > 7)

@ At tree-level in the planar limit, we have
NO% = L)L, (8)
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Non-BPS Operators

@ We consider a non-BPS operator
Oc = Oyl (YY) - YY) ). 9)
which can be mapped to the following state
0¢) = CP 0 L, Jyy - I L) (10)

of the SU (4) alternating spin chain. The Hamiltonian on this spin
chain is from the planar two-loop dilatation operator in the scalar
sector. This Hamiltonian has been proven to be integrable
[Minahan, Zarembo, 08][Bak, Rey, 08]. And the above state is
taken as one of the eigen-states of this Hamiltonian.
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@ We consider a non-BPS operator
Oc = Oyl (YY) - YY) ). 9)
which can be mapped to the following state
0¢) = CP 0 L, Jyy - I L) (10)

of the SU (4) alternating spin chain. The Hamiltonian on this spin
chain is from the planar two-loop dilatation operator in the scalar
sector. This Hamiltonian has been proven to be integrable
[Minahan, Zarembo, 08][Bak, Rey, 08]. And the above state is
taken as one of the eigen-states of this Hamiltonian.

@ Generically this state can be parametrized by the solution u, w, v
to the Bethe ansatz equations and zero-momentum condition,

|O) = |u,w, V). (11)
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Twisted-translated frame

@ We pick up a special class of three-point functions in the scalar
sector by considering the twisted-translated frame.
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Twisted-translated frame

@ We pick up a special class of three-point functions in the scalar
sector by considering the twisted-translated frame.

@ We put all operators along the line z* = (0,0, a).

@ When we translate an operator from the origin to the point (0,0, a),
we perform the following transformation,

Y'Y 4 kaY?, Y] = V) — kaY). (12)

@ From now on, we choose « = 1. The k-depedenece can be
recovered by dimensional analysis.
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Three-point functions

@ Based on the conformal symmetry and R-symmetry, the
normalized correlation function of three generic single-trace
operators in the twisted-translated frame should take the following

form, X R R
(O1(a1)Os(a2)O3(az)) _ Ci23 (13)
VNo,No,No, a¥;2'3a§§3‘1a;§1'2 ’
where
Yijlk = (Di + A5 — Ap) — (Ji + J; — Ji) (14)
and J is a U(1) R-charge which assigns charges (1/2,0,0,—1/2)
toY! ..., Y4 [Kazama, Komatsu, Nishimura, 14][Yang, Jiang,

Komatsu, JW, 21]
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Three-point functions

@ The main focus of this talk is on three-point functions of two
1/3-BPS single-trace operators O3 ,i = 1,2 and one non-BPS

operator Os.
@ For this special case we have

. A “ Az—J3
(O5(a1) 03 (a2) Os(as)) _ C123< a ) SENE)
osNosNo, 23031
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Three point functions

@ Inthe large N limit, the tree-level three-point function
(05 (a1)05(a2)Os(as)) , (16)

is computed from planar Wick contractions, where 37 | L; pairs
of fields are contracted.
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Three point functions

@ Inthe large N limit, the tree-level three-point function
(05 (a1)05(a2)Os(as)) , (16)

is computed from planar Wick contractions, where 37 | L; pairs
of fields are contracted.

@ Without loss of generality, we set as = 0 from now on.

@ Let us denote the number of the contractions between operators
O; and O; by Iy, k # 4, 5. Itis straightforward to see that
lijik = Li + Lj — L.

@ Notice that I3, l23)1, I31)2 @lways have the same odevity. This
behavior contrasts with that in V' = 4 SYM theory.
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Wick contractions

Figure: Tree-level planar Wick contractions.
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Boundary states

@ The three point function (0% (a1)O3(as)Os(as3)) can be expressed
using the overlap between a boundary state and a Bethe state.
When [;;,’s are even and 2 < I3, < 2L3 — 2, we have

12\3
N . R B ( ) Lle)\Zz 1 L
<Ol (a1)02 (a2)03(a3)> - N\a1]131‘2|a2\123‘1

< even

131‘2|u W, V).

(17)
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Boundary states
@ To make the structure of |Bf3vlf|’§> clear, We first define

(n1@{1,2,--- ,m},n@{1,2,--- ;m}| =
(7)™ (n1)gy -+ (10) "™ (1) g, (R2) "7+ (n2) 1,04
”-(ﬁg)ll(ng)]L<Il,J1,”- ,IL,JL’. (18)
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Boundary states
@ To make the structure of |Bf;f|’1;> clear, We first define

<ﬁ1@{17 27 te 7m}7n1@{1727 e 7m}| =

(n1)" (n1) g, - (A1) (n1) g, (R2) "1 (R2) 1,

e (A2)" (n2) g (I, Ty, I, i) (18)
e And
Ueven|Ila Jla -[27 J2 e 7IL715 JL*lvlLa JL>
= ’-[17J27-[27J37"’ aIL717JL7[L7J1>7 (19)
Uoddll1, J1, 12, J2 -+ s I -1, Jp—1, 11, JL)
- ’I27J17I37J27”‘ ,IL,JL_]_,I17JL>, (20)

where Ueen has already been introduced in [Jiang, JW, Yang, 23].
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Boundary states

@ Then the boundary state \Bf;ﬁg) in the considered case is,

even| __ ven, a even, b
< l23|1‘ - <Bf23e\1 ’ + <Blzs|1 ‘ (21)
with
L—-1 '
<Bleven7a| = Z<ﬁ1@{1, 2, ,l/2},n1@{1, 27 U vl/2}|(UevenUodd)] ’
§=0
(22)

<B;even,b| _ <Bleven,a|Ueven ) (23)
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Boundary states

@ When I3, = 0, the boundary state is

<Bgven| — L(ﬁg)h (n2)J1 c (ﬁz)IL (nQ)JL <Il, Ji, oo I, JL| . (24)
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Boundary states

@ When I3, = 0, the boundary state is

(B = L(n2)" (n2) gy -+ (R2) = (n2) g, (L1, T,y -+, I, | . (24)
@ Then boundary state for the case I3, = 2L3 is

< S\ie?)n| - <n1@{17 27 T 5L3}77—L1@{17 2, T 3L3}| : (25)
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Boundary states

@ When I3, = 0, the boundary state is

(B = L(n2)" (n2) gy -+ (R2) = (n2) g, (L1, T,y -+, I, | . (24)
@ Then boundary state for the case I3, = 2L3 is
< S\ie?)n| - <n1@{17 27 T 7L3}7ﬁ1@{17 2, T 3L3}| : (25)

@ In these scenarios, we have either Lo, = L3 + Ly or L1 = Lo + Ls,
which makes the three-point function an extremal one.

@ For these cases, the computation of correlators must account for
the mixing of Oy or O; with double trace operators, even in the
large N limit. [D’Hoker, Freedman, Mathur, 99]

@ We temporarily ignore this mixing.
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Boundary states

@ When I3, is odd, corresponding boundary states have similar
structure.
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|
Boundary states

@ When I3, is odd, corresponding boundary states have similar
structure.

@ For example, when 3, = 1, we have

(B = (B — (B (26)
L

(B = > mal], (27)
=1
L

By = N (mail, (28)

N
Il
—
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Integrable boundary states

@ We want to know among the boundary states |B), which are
integrable.
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@ We want to know among the boundary states |B), which are
integrable.

@ The result [Yang, 22][Yang, JW, 24] is that when [3,, = 0,2L3
(special extremal) or when I3, = 1,2L3 — 1 (special
next-to-extremal), the boundary state satisfies the following
twisted integrable condition,

T(N)|B) =7(=2— \)|B). (29)
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u=—v,w = —w as equations for sets u, w, v.
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Integrable boundary states

@ We want to know among the boundary states |B), which are
integrable.

@ The result [Yang, 22][Yang, JW, 24] is that when [3,, = 0,2L3
(special extremal) or when I3, = 1,2L3 — 1 (special
next-to-extremal), the boundary state satisfies the following
twisted integrable condition,

T(N)|B) =7(=2— \)|B). (29)

@ Here 7(\) is one of the transfer matrices of the ABJM spin chain.

@ This twisted integrable condition leads to the selection rule that
the necessary condition for (u, w, v|3) being non-zero is that
u=—v,w = —w as equations for sets u, w, v.

@ We have numerical results to support that the boundary states the
other cases are not integrable.
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Special extremal correlators

G

Figure: Special extremal correlators.
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Special next-to-extremal correlators

Figure: Special next-to-extremal correlators.
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I
ABJM spin chain

@ The planar two-loop dilatation operators in the scalar sector of
ABJM theory can be described by the SU(4) alternating spin
chain with the integrable Hamiltonian,

AQ 2L
H=7"3 (2= 2P + PrupoKs + KypaPrge) . (30)

2
=1
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I
ABJM spin chain

@ The planar two-loop dilatation operators in the scalar sector of
ABJM theory can be described by the SU(4) alternating spin
chain with the integrable Hamiltonian,

AQ 2L

H== D> (2= 2Ppo + PraKin + KiaPruge) . (30)
=1

@ Gauge invariance requires that single-trace operators correspond
to an alternating spin chain where odd and even sites are in the
fundamental and anti-fundamental representations of the SU(4)
R-symmetry group, respectively.
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R-matrices

@ The SU(4) alternating chain has four R matrices,
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R-matrices

@ The SU(4) alternating chain has four R matrices,

Ro;i(X) = AL+ Py,
Ro;(\) = (A +2)T + Ky;. 1)
R0j<)\) —(A+2)I + Kg;

Rg;(\) = Al + Pg;.

@ Here, 0 and 0 denote the auxiliary space in the fundamental and
anti-fundamental representations of the SU (4), respectively.
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Monodromy matrices and transfer matrices

@ We define two monodromy matrices as

(A) -+ Ro(M)Ror () (32)
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Monodromy matrices and transfer matrices

@ We define two monodromy matrices as

@ We have

[7(w), 7(v)] = [7(u), 7(v)] = [7(u), T(v)] =

and the previous Hamiltonian can be obtained from the series

expansion of log(7(u)7(u)) at u = 0.

(35)
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Decomposition of 7()\)

@ Let us decompose 7(\) as

Here for each term of O, ,,, there are m P’s and n K’s inside the
trace.
@ We have

“A=2)ET"O0 0. (36)

ﬁMh

(_)\ o 2)LfmAL7nOm’n

M=
M=

T(=A—2) =

3
I
(=)
3
I
=)

Lfm(_)\ . 2)Lin0n,m ]

I
M=
Pjh

3
Il
(=)
S
I
o
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Integrable boundary states

@ If |B) satisfies the conditions,

for any 0 < m,n < L, then it satisfies The twisted integrable
condition
T(N|B) =7(=A=2)[B), (38)

[Yang, 2022]
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Integrable boundary states

@ If |B) satisfies the conditions,

for any 0 < m,n < L, then it satisfies The twisted integrable
condition

T(A)|B) = 7(=A - 2)|B), (38)
[Yang, 2022]

@ We ([Yang, JW, 2024]) proved that both \ded’b> and \ded’“>
satisfy the conditions (37). So they are integrable, as well as
1B94d). This is one of our main results.
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Integrable boundary states

@ In the proof, we do not use the BPS conditions,
ny -1 = ne - Ny = 0, letting along the twisted-translated frame.

37/43



Integrable boundary states

@ In the proof, we do not use the BPS conditions,
ny -1 = ne - Ny = 0, letting along the twisted-translated frame.

@ So this proof show that |ded’“) and |ded’b> are integrable for
Il =1orl=2Ls— 1 without any constraints on n;’s and 7,’s.
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The overlaps

@ The twisted-translated frame leads to the selection rule,

Ny =Ny = Ny . (39)
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The overlaps

@ The twisted-translated frame leads to the selection rule,
Ny= DNy, =Ny . (39)
@ The following result from symmetry

(05(a1) 05 (a2) Os(as)) :CI2S< ar: )A?’“k, (40)

\/;Q(’)g-jQOSJQOg 23031

further leads to the constraints,

Nu < min(l31)2, lag)1) - (41)
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The overlaps

@ The twisted-translated frame leads to the selection rule,
Ny =N, = Ny . (39)

@ The following result from symmetry

Ao Ao 2 Az—J3
(01(a1)03(a2)Os(as)) — Cio3 < a12 > 7 (40)
\/Wogﬂogﬂog 23031
further leads to the constraints,
Nu < min(l31)2, lag)1) - (41)

@ Using this constraint and coordinate Bethe ansatz (CBA), all
overlaps from the three point functions in the integrable cases are
computed.
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An example

@ Consider the case with I3 = Ny = Nw = Ny = 1, the Bethe
ansatz equations are

i Ls i
1 = u~l—? u—w+ 3 (42)
u— 3 u—w— 3%’
w—u+ &
- 2 (43)
w—u— 3
v i\ wed
- ( ) 3 "
v — 5 vV—w — 5

and the zero-momentum condition is

ut+zv+3
<.

1= :
u — 5 v — 5
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An example

@ The solutions are [Bak, Rey, 08]

withk =1,---, L.
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An example

@ The solutions are [Bak, Rey, 08]

w=20, (46)

withk =1,---, Ls.
@ By constructing eigenstates via CBA and Gaudin formula for the
norms [Yang, Jiang, Komatsu, JW, 21], we can get

c _ (—1)L2+1sgn(a1a2a12)v2L1L2L3 exp LQ;,lill
1 NVIs+1 ‘

(47)
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Conclusion

@ We found that the boundary state from the two BPS operators is
intergrable only when the correlator is special extremal
(I312 = 0,2L3) or special next-to-extremal (I3 = 1,2L3 — 1).
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Conclusion

@ We found that the boundary state from the two BPS operators is
intergrable only when the correlator is special extremal
(I312 = 0,2L3) or special next-to-extremal (I3 = 1,2L3 — 1).

@ For these integrable case, we computed the three-point functions
using the constraints from symmetries and CBA.
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I
Outlook

@ It should be interesting to revisit the three-point function (O°0°0)
in AV = 4 SYM [Escobedo, Gromov, Sever, Vieira, 10] to determine
when the boundary state from the two BPS operators is integrable.
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I
Outlook

@ It should be interesting to revisit the three-point function (O°0°0)
in AV = 4 SYM [Escobedo, Gromov, Sever, Vieira, 10] to determine
when the boundary state from the two BPS operators is integrable.

@ lItis also desirable to compute more general three-point functions
in ABJM theory to aid the development of hexagon program
[Basso, komatsu, Vieira, 15] for this theory.
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Thanks for Your Attention!



