A PATH BETWEEN

INTEGRABILITY AND QUANTUM CHAOS

Cheng Peng (彭程) Kavli Institute for Theoretical Sciences (KITS) University of Chinese Acadamy of Sciences (UCAS)

International Workshop on Exact Methods in Quantum Field Theory and String Theory 2024, 10/17/2024

BACKGROUND

BH EVAPORATION AND ENSEMBLE AVERACE

Penginton; Almheiri, Engelhardt, Marolf, Maxfield;Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini;

A "solvable" incarnation of the information paradox

 \triangleright The information paradox:

Are Hawking radiations from Blackholes thermal or informative?

- \triangleright Recent breakthroughs in this puzzle in low-dimensional solvable toy models
	- New quantum extremal surface in an evaporating black hole
	- \div Alternatively, the necessity of including the spacetime wormholes in the gravitational path integral \leftarrow

BH EVAPORATION AND ENSEMBLE AVERAGE

§ Spacetime wormholes are tied with ensemble averages of theories

(Coleman; Giddings Strominger; Maldacena Maoz)

§ Evidence including e.g.

$$
\langle Z[J_1] \cdots Z[J_n] \rangle := \int_{\Phi \sim J} \mathcal{D}\Phi \, e^{-S[\Phi]}
$$

$$
\langle Z[J_1]Z[J_2] \rangle = \bigodot_{p \perp \{1,2,...n\}} \lambda^{p} = B_n(\lambda) = \sum_{d=0}^{\infty} d^n p_d(\lambda) = \langle x^n \rangle_{\text{Pois}}, \qquad p_d(\lambda) = e^{-\lambda} \frac{\lambda^d}{d!}
$$

(Marolf, Maxfield, 2020
CP, Tian, Yu 2021, **CP**, Tian, Yang 2022)

§ Disordered models are special cases of the "ensemble average theories" **⁴**

HIGH-DIMENSIONAL DISORDERED MODELS

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

If there exist high dimensional covariant disordered models?

2D and 3D models with different numbers of SUSY and tunable parameters

- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ? Consistent with various **bootstrap** bounds, hence compatible with many requirements
- 4. If there are clear connections with other well-known conventional QFTs ? Observe **higher-spin limits** in different models, which sets up clear connections with higher-spin theories and probably string theory **⁵**

INTECRADILITY 8 CHAOS

INTECRABILITY - CHAOS TRANSITION

• This connection is an example of a transition from chaos to integrability

§ There are mainly two types of such transitions in the literature

- 1. Change some coupling constants directly
	- Turn on some coupling constants from zero
	- § Couple an integrable theory with a chaotic theory, and make them compete as we vary some coupling constants
- 2. Do not change the couplings constants, change other parameters instead

A 2D N=(0,2) MODEL

CP, *JHEP* 12 (2018) 065, Ahn **CP**, JHEP 07 (2019) 092

$$
\triangleright \quad S = \int d^2z d\theta d\bar{\theta} \left(-\bar{\Phi}^a \partial_{\bar{z}} \Phi^a + \frac{1}{2} \bar{\Lambda}^i \Lambda^i \right) + \int d^2z d\theta \frac{J_{ia_1...a_q}}{q!} \Lambda^i \Phi^{a_1} \dots \Phi^{a_q}
$$

$$
\begin{aligned}\n\text{Chiral:} \quad & \Phi^a = \phi^a + \sqrt{2}\theta\psi^a + 2\theta\bar{\theta}\partial_z\phi^a \,, \qquad a = 1 \dots N \\
\text{Fermi:} \quad & \Lambda^i = \lambda^i - \sqrt{2}\theta G^i + 2\theta\bar{\theta}\partial_z\lambda^i \,, \qquad i = 1 \dots M\n\end{aligned}
$$

$$
\triangleright \quad N, M \gg 1, \text{ with } \mu = \frac{M}{N} \text{ fixed (but tunable)}
$$

$$
\triangleright \qquad \text{IR solution} \qquad G_c^I(z_1, z_2) = \frac{n_I}{(z_1 - z_2)^{2h_I}(\bar{z}_1 - \bar{z}_2)^{2\bar{h}_I}} \qquad I = \phi, \psi, \lambda, G
$$

$$
h_{\phi} = \frac{\mu q - 1}{2\mu q^2 - 2}, \quad h_{\psi} = \frac{\mu q^2 + \mu q - 2}{2\mu q^2 - 2}, \quad h_{\lambda} = \frac{q - 1}{2\mu q^2 - 2}, \quad h_{G} = \frac{\mu q^2 + q - 2}{2\mu q^2 - 2}
$$

$$
\tilde{h}_{\phi} = \frac{\mu q - 1}{2\mu q^2 - 2}, \quad \tilde{h}_{\psi} = \frac{\mu q - 1}{2\mu q^2 - 2}, \quad \tilde{h}_{\lambda} = \frac{\mu q^2 + q - 2}{2\mu q^2 - 2}, \quad \tilde{h}_{G} = \frac{\mu q^2 + q - 2}{2\mu q^2 - 2}.
$$

TWO INTERESTING LIMITS

- Lyapunov exponent drops to zero
	- "Integrability" takes over ?
	- Large symmetries ?
	- This happens at fixed J, the transition is due to the screening effect of the interactions

TOWERS OF SPINNING OPERATORS

- \blacktriangleright A tower of operators has conformal dimension (0,s) or (s,0) in the special limit.
- Emergent higher-spin conserved operators in the two limits!
- Generate large symmetry \rightarrow nonchaotic

CONNECTIONS WITH CONVENTIONAL THEORIES

• Dispersion relation of this **SYK** model: the anomalous dimension γ logarithmically depends on the spin s

- § **Higher-spin** perturbation computation (Gaberdiel, CP, Zadeh, *JHEP* 10 logarithmic
- § Rotating folded closed long **string** in AdS $E-S = \frac{\sqrt{\lambda}}{\pi} \ln(S/\sqrt{\lambda}) + \cdots$ $\lambda = g_{\text{YM}}^2 N$

logarithmic due to the AdS geometry

(Gubser, Klebanov, Polyakov, *Nucl.Phys.B* 636 (2002) 99-114)

A 3D DISORDERED MODELS

Chang, Colin-Ellerin, CP, Rangamani, Phys.Rev.Lett. 129, 011603

- We can in fact consider more general $2+1d$ disordered models \blacktriangleright
	- with supersymmetry

$$
L_{\text{susy}} = -\int d^2\theta d^2\overline{\theta} \left(\overline{\phi}_i(y^+) \phi^i(y) + \overline{\phi}_a(y^+) \phi^a(y) \right) - \left[\int d^2\theta \frac{1}{2} g_{aij} \phi^a(y) \phi^i(y) \phi^j(y) + \text{c.c.} \right]
$$

where \neq^{i} and \neq^{a} are chiral $\mathcal{N}=2$ multiplets with $i=1...N$ and $a=1...M$

or without supersymmetry \checkmark

$$
L_{\text{bos}} = \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi^i + \frac{1}{2} g_{aij} \sigma^a \phi^i \phi^j - \frac{1}{4} (\sigma^a)^2
$$

where ϕ_i and σ^a are bosonic fields with $i = 1...N$ and $a = 1...M$

Can solve the model in the large-N limit in the IR analytically \blacktriangleright $N \rightarrow \infty$, $\lambda \equiv M/N$, fixed

3D DISORDERED MODELS: HIGHER-SPIN LIMITS

Chang, Colin-Ellerin, **CP**, Rangamani, Phys.Rev.Lett. 129 (2022) 1, 011603

- \triangleright Most of the details of the model are quite different from the 0+1d and 1+1d models
- \triangleright Nevertheless there is again a clear connection to higher-spin theories
- \triangleright There are special limits

 \triangleright This indicates the connection to higher-spin theories is probably universal

HIGH-DIMENSIONAL DISORDERED MODELS

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

If there exist high dimensional covariant disordered models?

2D and 3D models with different numbers of SUSY and tunable parameters

- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ? Consistent with various **bootstrap** bounds, hence compatible with many requirements
- **4. If there are clear connections with other well-known conventional QFTs ?** Observe **higher-spin limits** in different models, which sets up clear connections with higher-spin theories and probably string theory

nature

nature > articles > article

Article | Published: 30 November 2022

Traversable wormhole dynamics on a quantum processor

Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer, Samantha I. Davis, Nikolai

Lauk, Hartmut Neven & Maria Spiropulu[⊠]

Nature 612, 51-55 (2022) Cite this article

49k Accesses | 61 Citations | 1616 Altmetric | Metrics

Gao-Jafferis-Wall JHEP 12 (2017)

nature

nature > articles > article

Article | Published: 30 November 2022

Traversable wormhole dynamics on a quantum processor

Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer, Samantha I. Davis, Nikolai Lauk, Hartmut Neven & Maria Spiropulu[⊠]

Nature 612, 51-55 (2022) Cite this article

 $H = H_L + H_R$

TRAVERSABLE WORMHOLES ?

 $H_{LR} = -0.36 \psi^1 \psi^2 \psi^4 \psi^5 + 0.19 \psi^1 \psi^3 \psi^4 \psi^7 - 0.71 \psi^1 \psi^3 \psi^5 \psi^6$ +0.22 $\psi^2 \psi^3 \psi^4 \psi^6$ + 0.49 $\psi^2 \psi^3 \psi^5 \psi^7$,

TRAVERSABLE WORMHOLES ŋ

 $H_{LR} = -0.36 \psi^1 \psi^2 \psi^4 \psi^5 + 0.19 \psi^1 \psi^3 \psi^4 \psi^7 - 0.71 \psi^1 \psi^3 \psi^5 \psi^6$ +0.22 $\psi^2 \psi^3 \psi^4 \psi^6$ + 0.49 $\psi^2 \psi^3 \psi^5 \psi^7$,

Wait, isn't H commuting?

Namely there are lots of conserved quantities?

So shouldn't the theory Be integrable?

But gravity is chaotic …

COMMUTING SYK

Gao JHEP 01 (2024)

- § Terms in the Hamiltonian commute
- § A more general representation of such models

$$
H = \sum_{i_k} \mathcal{J}_{i_1 \cdots i_{q/2}} X_{i_1} \cdots X_{i_{q/2}} \qquad X_i = \psi_{2i-1} \psi_{2i}
$$

- Also known as the Sherrington-Kirkpatrick (SK) model for $q=4$
	- § Integrable, should not be chaotic
	- § The partition function is Gaussian, not dense near the edge, not holographic

$$
\overline{Z} = \int dE e^{-\beta E} \rho(E) \implies \rho(E) = \frac{1}{\mathcal{J}} \sqrt{\frac{q}{\pi N}} \exp(-qE^2/(N\mathcal{J}^2))
$$

THE COMMUTING SYK IS EASIER TO REALIZE ON QUANTUM COMPUTERS, AS IN THE NATURE PAPER.

HOW CAN WE MAKE FURTHER USE OF IT ?

MORE IS DIFFERENT ?

Gao, Lin, CP, WIP

§ We can consider the following alternative model

$$
\tilde{H}=\frac{1}{\sqrt{d}}\sum_{a=1}^d \tilde{H}_a, \ \tilde{H}_a=\sum_{i_1<\cdots
$$

- \bullet d = 1, the original commuting SYK
- \bullet d > 1, the model is not commuting, but similar enough
- § Is this model better (holographic) ?

MORE IS DIFFERENT I

• Spectral form factor

Ramp and plateau for the d>1 case

- Spectrum
	- $d = 1$, Gaussian
	- $d > 1$, \sim regular SYK

$d \rightarrow \infty$: \cong REGULAR SYK

- We can first take the extremal limit $d \rightarrow \infty$
- Solve the model in the double scaling limit

$$
N \to \infty
$$
, $p \to \infty$, $\lambda = \frac{4p^2}{N}$

- Chord diagrams, each intersections contributes a factor of $q=e^{-\lambda}$
- A typical chord diagram: all chords are different in color $\lim_{d\to\infty} {d\choose n} n!/d^n = 1$
- The contributions are the same as those in regular SYK

$d, q \rightarrow 0$

- § Small d>1, but more complicated
- § Again try to solve these models in the double scaling limit
- One solvable limit is $q \to 0$
- **Different color crossing is forbidden,** only same color crossing is allowed
- The model can be solved using free probability

THANK YOU!

A 3D SYK MODEL

Chang, Colin-Ellerin, **CP**, Rangamani, *JHEP* 11 (2021) 211

■ It turns out possible to construct an *N*=2 Supersymmetry SYK model

$$
L = -\int d^2\theta d^2\overline{\theta} \left(\overline{\Phi}_i(y^{\dagger}) \Phi_i(y) \right) - \left[\int d^2\theta \frac{1}{3} g_{ijk} \Phi_i(y) \Phi_j(y) \Phi_k(y) + \text{c.c.} \right]
$$

\n
$$
P(g_{ijk}) \propto e^{-N^2 \frac{g_{ijk} \overline{g}_{ijk}}{J}}, \qquad \langle g_{ijk} \rangle = 0, \qquad \langle g_{ijk} \overline{g}_{ijk} \rangle = \frac{J}{N^2}.
$$

with *N* flavors of chiral multiplets

$$
\Phi(X) = \phi(y) + \sqrt{2} \theta^{\alpha} \psi_{\alpha}(y) + \theta^2 F(y) \qquad \overline{\Phi}(X^{\dagger}) = \overline{\phi}(y^{\dagger}) + \sqrt{2} \overline{\theta}^{\alpha} \overline{\psi}_{\alpha}(y^{\dagger}) + \overline{\theta}^2 \overline{F}(y^{\dagger})
$$

• In components:

$$
L = -i\overline{\psi}_i \; \partial \psi_i + \partial_\mu \overline{\phi}_i \partial_\mu \phi_i - \overline{F}_i F_i - g_{ijk} \left(\phi_i \phi_j F_k - \psi_i \psi_j \phi_k \right) - \overline{g}_{ijk} \left(\overline{\phi}_i \overline{\phi}_j \overline{F}_k - \overline{\psi}_i \overline{\psi}_j \overline{\phi}_k \right)
$$

• The model is again solvable, and its properties indicates that the disordered theory flow to a normal IR fixed point that has no obvious difference from the other conventional models.

SPECTRUM: THE 3D SYK MODEL v.s. $N=2$ BOOTSTRAP

Chang, Colin-Ellerin, **CP**, Rangamani, *JHEP* 11 (2021) 211

 \triangleright The IR spectrum is within the bounds obtained from numerical bootstrap

Bobev, El-Showk, Mazac, Paulos, *Phys. Rev. Lett.* 115 (2015) 051601

 \triangleright Anomalous dimension $\tau = \Delta - \ell = 2\Delta_{\phi} + 2m + \gamma(m, \ell)$

The large-spin limit, ie fixed m , large limit

$$
\gamma(m,\ell) = (-1)^{\ell+1} \frac{\mathcal{G}_3(\Delta_\phi)}{\ell^{\Delta_\phi}} \frac{\Gamma(m-\Delta_\phi+1)}{\Gamma(m+1)}, \qquad \ell \gg 1
$$

agrees with results from the light-cone analytic bootstrap

$$
\gamma(m,\ell) = (-1)^{\ell} \frac{C_m}{\ell^{\tau_{\min}}} \qquad \tau_{\min} = \tau_{\phi} = \Delta_{\phi}
$$

27 Fitzpatrick, Kaplan, Poland, Simmons-Duffin, *JHEP* 12 (2013)

3D DISORDERED MODELS: OTHER PROPERTIES

Chang, Colin-Ellerin, CP, Rangamani, Phys. Rev. Lett. 129 (2022) 1, 011603

The anomalous dimensions

$$
\lim_{\ell \gg 1} \gamma_{\phi,\sigma}(\ell,n) \sim \frac{1}{\ell^{2\Delta_{\phi}}}, \quad \lim_{n \gg 1} \gamma_{\phi,\sigma}(\ell,n) \sim \frac{1}{n^{4\Delta_{\phi}}}
$$

again agrees with the bootstrap results

The central charges behaves as normal field theories in the special limits \blacktriangleright

$$
C_T \to N\left(\frac{3}{2} - \frac{20}{3\pi^2}\lambda + \cdots\right) \quad \text{as} \quad \lambda \to 0
$$

All these properties indicates that the disordered theory flow to a normal IR fixed point that has no \blacktriangleright obvious difference from the other conventional models.

A 3D SYK MODEL

Chang, Colin-Ellerin, **CP**, Rangamani, *JHEP* 11 (2021) 211

■ It turns out possible to construct an *N*=2 Supersymmetry SYK model

$$
L = -\int d^2\theta d^2\overline{\theta} \left(\overline{\Phi}_i(y^{\dagger}) \Phi_i(y) \right) - \left[\int d^2\theta \frac{1}{3} g_{ijk} \Phi_i(y) \Phi_j(y) \Phi_k(y) + \text{c.c.} \right]
$$

\n
$$
P(g_{ijk}) \propto e^{-N^2 \frac{g_{ijk} \overline{g}_{ijk}}{J}}, \qquad \langle g_{ijk} \rangle = 0, \qquad \langle g_{ijk} \overline{g}_{ijk} \rangle = \frac{J}{N^2}.
$$

with *N* flavors of chiral multiplets

$$
\Phi(X) = \phi(y) + \sqrt{2} \theta^{\alpha} \psi_{\alpha}(y) + \theta^2 F(y) \qquad \overline{\Phi}(X^{\dagger}) = \overline{\phi}(y^{\dagger}) + \sqrt{2} \overline{\theta}^{\alpha} \overline{\psi}_{\alpha}(y^{\dagger}) + \overline{\theta}^2 \overline{F}(y^{\dagger})
$$

• In components:

$$
L = -i\overline{\psi}_i \, \overline{\partial}_i \psi_i + \partial_\mu \overline{\phi}_i \partial_\mu \phi_i - \overline{F}_i F_i - g_{ijk} (\phi_i \phi_j F_k - \psi_i \psi_j \phi_k) - \overline{g}_{ijk} (\overline{\phi}_i \overline{\phi}_j \overline{F}_k - \overline{\psi}_i \overline{\psi}_j \overline{\phi}_k)
$$

• The model is again solvable, and its properties indicates that the disordered theory flow to a normal IR fixed point that has no obvious difference from the other conventional models.

SPECTRUM: THE 3D SYK MODEL v.s. $N=2$ BOOTSTRAP

Chang, Colin-Ellerin, **CP**, Rangamani, *JHEP* 11 (2021) 211

 \triangleright The IR spectrum is within the bounds obtained from numerical bootstrap

Bobev, El-Showk, Mazac, Paulos, *Phys. Rev. Lett.* 115 (2015) 051601

 \triangleright Anomalous dimension $\tau = \Delta - \ell = 2\Delta_{\phi} + 2m + \gamma(m, \ell)$

The large-spin limit, ie fixed m , large limit

$$
\gamma(m,\ell) = (-1)^{\ell+1} \frac{\mathcal{D}_3(\Delta_\phi)}{\ell^{\Delta_\phi}} \frac{\Gamma(m-\Delta_\phi+1)}{\Gamma(m+1)}, \qquad \ell \gg 1
$$

agrees with results from the light-cone analytic bootstrap

$$
\gamma(m,\ell) = (-1)^{\ell} \frac{C_m}{\ell^{\tau_{\min}}} \qquad \tau_{\min} = \tau_{\phi} = \Delta_{\phi}
$$

30 Fitzpatrick, Kaplan, Poland, Simmons-Duffin, *JHEP* 12 (2013)

3D DISORDERED MODELS: OTHER PROPERTIES

Chang, Colin-Ellerin, CP, Rangamani, Phys. Rev. Lett. 129 (2022) 1, 011603

The anomalous dimensions

$$
\lim_{\ell \gg 1} \gamma_{\phi,\sigma}(\ell,n) \sim \frac{1}{\ell^{2\Delta_{\phi}}}, \quad \lim_{n \gg 1} \gamma_{\phi,\sigma}(\ell,n) \sim \frac{1}{n^{4\Delta_{\phi}}}
$$

again agrees with the bootstrap results

The central charges behaves as normal field theories in the special limits \blacktriangleright

$$
C_T \to N\left(\frac{3}{2} - \frac{20}{3\pi^2}\lambda + \cdots\right) \quad \text{as} \quad \lambda \to 0
$$

All these properties indicates that the disordered theory flow to a normal IR fixed point that has no \blacktriangleright obvious difference from the other conventional models.

