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BH EVAPORATION AND ENSEMBLE AVERAGE

A “solvable” incarnation of the information paradox

> The information paradox:
Are Hawking radiations from Blackholes
thermal or informative?

» Recent breakthroughs 1n this puzzle in
low-dimensional solvable toy models

< New quantum extremal surface

in an evaporating black hole

< Alternatively, the necessity of including the

spacetime wormholes in the gravitational path integral
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BH EVAPORATION AND ENSEMBLE AVERAGE

= Spacetime wormholes are tied with ensemble averages of theories

= Evidence including e.g.
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= Disordered models are special cases of the “ensemble average theories”
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HIGH-DIMENSIONAL DISORDERED MODELS

1.

If there exist high dimensional covariant disordered models ?

2D and 3D models with different numbers of SUSY and tunable parameters

Do they share similar nice features as their low dimensional counterparts ?

Solvable in the large-N limit, analytically in the IR and numerically in general

Do they fulfill the usual requirements obeyed by conventional QFTs ?

Consistent with various bootstrap bounds, hence compatible with many requirements
If there are clear connections with other well-known conventional QFTs ?

Observe higher-spin limits in different models, which sets up clear connections with

higher-spin theories and probably string theory @
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INTEGRABILITY — CHAOS TRANSITION

= This connection is an example of a transition from chaos to integrability

= There are mainly two types of such transitions in the literature

1. Change some coupling constants directly
= Turn on some coupling constants from zero

= Couple an integrable theory with a chaotic theory, and make them compete as
we vary some coupling constants

2. Do not change the couplings constants, change other parameters instead
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TWO INTERESTING LIMITS

n —r +00

Lyapunov exponent drops to zero
“Integrability” takes over ?
Large symmetries ?

This happens at fixed J, the transition is
due to the screening effect of the
interactions
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TOWERS OF SPINNING OPERATORS

= A tower of operators has conformal dimension (0,s) or (s,0) in the special limit.

» Emergent higher-spin conserved operators in the two limits!

= Generate large symmetry ® nonchaotic

h(u)
— s=2
- T o s=3
— s=4
/ - N\ — s=5
" \\\ =1
/S L =2
// - “w, A\,
/ // \ =3
/ / \\\\ =4
// / ........................ \\\
S o N\
/ e NN\
/ o~ " N\
/ / o . \\\
/ / N\
/)~ NN
[ ) SN
// 5 A\
/ N\
[/ A N
// Py \.\\
[ O\
/A N ‘\\\\
Vi N\
(B *,

Ve SO\
Y2 2\
Ve ‘\.\;\
1 h,

(v +5,7)

s: spin

7. anomalous
dimension




CONNECTIONS WITH CONVENTIONAL THEORIES

* Dispersion relation of this SYK model:

the anomalous dimension y logarithmically

depends on the spin s

"V (s) ~ log(s)

log(s) :

= Higher-spin perturbation computation

5 logarithmic

. Rotating folded closed long string in AdS

o
E—S=—1In(S/V\)+-- . — o2
- n(S/vVa) + L= gymN

logarithmic due to the AdS geometry
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A 3D DISORDERED MODELS

We can in fact consider more general 2+1d disordered models

v with supersymmetry
(. + i N +\ . a 1 a i '
Loy =—[d°0d°0 (£,(y) £ (3)+ ea(y")e (y))—[ J 052,50 ) £ () (y)+c.c}

where £' and ¢“are chiral 7=2 multiplets with i=1...N and a=1...M

v or without supersymmetry
Lios =—5 $,0°9 + ga,,G ‘0'¢’ ——(0 )’

where ¢ and o are bosonic fields with i=1...Nand a=1..M

Can solve the model in the large-N limit in the IR analytically
N — oo, A=M/N, fixed

©




3D DISORDERED MODELS: HIGHER-SPIN LIMITS

> Most of the details of the model are quite different from the 0+1d and 1+1d models
» Nevertheless there 1s again a clear connection to higher-spin theories

» There are special limits

< Free £ A—0, . . =1 higher-spin
. higher-spin

the 2+1D SYK model
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» This indicates the connection to higher-spin theories is probably universal
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TRAVERSABLE WORMHOLES ?
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TRAVERSABLE WORMHOLES ?
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ﬁVait, isn’t H commuting}

Namely there are lots of
conserved quantities?

So shouldn’t the theory
Be integrable?

Qﬂ gravity is chaotic /




COMMUTING SYK

» Terms in the Hamiltonian commute

Gao JHEP 01 (2024)

= A more general representation of such models

H = ij‘l---iq/inl e Xy Xi = P2i—12
k

= Also known as the Sherrington-Kirkpatrick (SK) model for g=4

= Integrable, should not be chaotic

= The partition function is Gaussian, not dense near the edge, not holographic

7 — / dEePEp(E) —> p(E) :% L exp(—gB?/(NT?))
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THE COMMUTING SYK IS EASIER TO REALIZE ON
QUANTUM COMPUTERS, AS IN THE NATURE PAPER.

HOW CAN WE MAKE FURTHER USE OF IT ?




MORE IS DIFFERENT ?

Gao, Lin, CP, WIP

= We can consider the following alternative model

d
Z 2. T X X

i1 < <y

%\

Xl = 1o 19¥(25-242a)an

= d = 1, the original commuting SYK

= d > 1, the model is not commuting, but similar enough

= Is this model better (holographic) ?




MORE IS DIFFERENT !

* Spectral form factor

107"

Ramp and plateau for the
d>1 case

10—5 4

T T 9 9 o w1 w
e Spectrum
041
. 0.35
d = 1, Gaussian vsol
0.3} .
025+
d> ]., ~ Iegular SYK 02" 020
0.15
0.1F 0.10 -
0.05+
\\ \\ ‘ | | | | ‘ ,
-4 -2 0 2 4 -2 -1 0 1 2 3




d —»o: =REGULAR SYK

= We can first take the extremal limit d — «© \

= Solve the model in the double scaling limit
2

4p
N

= Chord diagrams, each intersections contributes a factor of g = e’

N — oo, p —> o, A=

d—»

d
= A typical chord diagram: all chords are different in color 1im( jn!/ d" =1
n

= The contributions are the same as those in regular SYK




GENERAL 4, g0

= Small d>1, but more complicated
= Again try to solve these models in the double scaling limit
= One solvable limitis ¢ -0

= Different color crossing is forbidden,

only same color crossing is allowed

= The model can be solved using free probability
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A 3D SYK MODEL

= It turns out possible to construct an N=2 Supersymmetry SYK model

L=—[d0d0(®, <y‘f><1>i<y>)—[ | dzeggl-,-k@,.(wcbj(y)@k(y) +c.c}

_NZM B J
P (gijk)oce T <gijk> =0, <gijkgijk> :ﬁ'
with N flavors of chiral multiplets

OX)=g(»)+V20°y, (N+OF(y)  dXH)=g()+20%7,0")+8*F(y")
= In components:

L :—i',pl- ﬁwl _I_a,ugi@,uﬁ' _F;'F;_gijk (¢Z¢JF;€ _Wil//j¢k)_§ij (ﬁgjﬁk _Wig;jak)

= The model is again solvable, and its properties indicates that the disordered theory flow to a

normal IR fixed point that has no obvious difference from the other conventional models. @



SPECTRUM: THE 3D SYK MODEL vs. /=2 BOOTSTRAP

> The IR spectrum is within - e N W BT

ra
(D) 0
(DD)' 0
J’ 1

the bounds obtained from

numerical bootstrap

> Anomalous dimension  7=A-{=2A,+2m+y(m, ()
The large-spin limit, ie fixed m, large linyit

y(m, 0) = (~1)"" %g(AAf) T(m—A,+1)

agrees with results from the light-cone analytic bootstrap
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3D DISORDERED MODELS: OTHER PROPERTIES

» The anomalous dimensions

1 1

M Ygo(hom) =~ s MMy, o (hm) ~ 7

again agrees with the bootstrap results

» The central charges behaves as normal field theories in the special limits

3 20
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ﬂ+---j as A—-0

RY/4

»  All these properties indicates that the disordered theory flow to a normal IR fixed point that has no
obvious difference from the other conventional models.
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